Math in Focus

 Singapore Math by Marshall Cavendish ${ }^{\circ}$WC Marshall Cavendish Education

 Common Core State Standards for Mathematics

Math in Focus

(C) 2015

Grade 1

Houghton Mifflin Harcourt
 Math in Focus, Grade 1 ©2015

Common Core Edition

correlated to the

Common Core State Standards for Mathematics
 Grade 1

Standards Descriptor	Page Citations
Standards for Mathematical Practice	
SMP. 1 Make sense of problems and persevere in solving them. How Math in Focus Aligns: Math in Focus is built around the Singapore Ministry of Education's mathematics framework pentagon, which places mathematical problem solving at the core of the curriculum. Encircling the pentagon are the skills and knowledge needed to develop successful problem solvers, with concepts, skills, and processes building a foundation for attitudes and metacognition. Math in Focus is based on the premise that in order for students to persevere and solve both routine and non-routine problems, they need to be given tools that they can use consistently and successfully. They need to understand both the how and the why of math so that they can self-monitor and become empowered problem solvers. This in turn spurs positive attitudes that allow students to solidify their learning and enjoy mathematics. Math in Focus teaches content through a problem solving perspective. Strong emphasis is placed on the concrete-to-pictorial-toabstract progress to solve and master problems. This leads to strong conceptual understanding. Problem solving is embedded throughout the program.	

Standards Descriptor		Page Citations
SMP. 2 Reason abstractly and quantitatively. How Math in Focus Aligns: Math in Focus' concrete-pictorial-abstract progression helps students effectively contextualize and decontextualize situations by developing a deep mastery of concepts. Each topic is approached with the expectation that students will understand both how it works, and also why. Students start by experiencing the concept through hands-on manipulative use. Then, they must translate what they learned in the concrete stage into a visual representation of the concept. Finally, once they have gained a strong understanding, they are able to represent the concept abstractly. Once students reach the abstract stage, they have had enough exposure to the concept and they are able to manipulate it and apply it in multiple contexts. They are also able to extend and make inferences; this prepares them for success in more advanced levels of mathematics. They are able to both use the symbols and also understand why they work, which allows students to relate them to other situations and apply them effectively.	For example: SE/TE-1A: Workbook 1A: SE/TE-1B: Workbook 1B:	$\begin{aligned} & 20-26,30-36,42-54,55-58,59-62,63,87-93,94- \\ & 95,138-140,141,151-163,163-165,189-194 \text {, } \\ & 195,215-220,220-221,232-236,237-239,246- \\ & 252 \\ & 25 \mathrm{~A}, 26 \mathrm{~A}, 33 \mathrm{~A}, 33 \mathrm{~B}, 33 \mathrm{C}, 49 \mathrm{~A}, 49 \mathrm{~B}, 54,54 \mathrm{~A}, \\ & 58 \mathrm{~A}, 63,63 \mathrm{~A}, 93 \mathrm{~A}, 95 \mathrm{~A}, 140,141 \mathrm{~A}, 141 \mathrm{~B}, \\ & 156 \mathrm{~A}, 162,165 \mathrm{~A}, 194 \mathrm{~A}, 195 \mathrm{~A}, 219,221 \mathrm{~A}, 236 \text {, } \\ & 236 \mathrm{~A}, 239,252,252 \mathrm{~A} \\ & \text { 6-12, 18-22, 36-41, 66-75, 76- 77, 101-110, 119- } \\ & 122,123-131,143-149,150,164-169,170-175 \text {, } \\ & \text { 176, 182-192, 213, 242-248, 249, 254-258, 263- } \\ & 266,296-301,302-303 \\ & 12 \mathrm{~A}, 12 \mathrm{~B}, 22,22 \mathrm{~A}, 41 \mathrm{~A}, 41 \mathrm{~B}, 73 \mathrm{~A}, 73 \mathrm{~B}, 77 \mathrm{~A}, \\ & 110 \mathrm{~A}, 122 \mathrm{~A}, 131 \mathrm{~A}, 131 \mathrm{~B}, 149,150 \mathrm{~A}, 169 \mathrm{~A}, \\ & 169 \mathrm{~B}, 175 \mathrm{~A}, 175 \mathrm{~B}, 176 \mathrm{~A}, 192,192 \mathrm{~A}, 213 \mathrm{~A}, \\ & 248 \mathrm{~A}, 248 \mathrm{~B}, 249 \mathrm{~A}, 258 \mathrm{~A}, 258 \mathrm{~B}, 266,266 \mathrm{~A}, \\ & 301 \mathrm{~A}, 301 \mathrm{~B}, 301 \mathrm{C}, 303 \mathrm{~A}, 303 \mathrm{~B} \end{aligned}$

Standards Descriptor	Page Citations
SMP. 3 Construct viable arguments and critique the reasoning of others. How Math in Focus Aligns: As seen on the Singapore Mathematics Framework pentagon, metacognition is a foundational part of the Singapore curriculum. Students are taught to self-monitor, so they can determine whether or not their solutions make sense. Journal questions and other opportunities to explain their thinking are found throughout the program. Students are systematically taught to use visual diagrams to represent mathematical relationships in such a way as to not only accurately solve problems, but also to justify their answers. Chapters conclude with a Put on Your Thinking Cap! problem. This is a comprehensive opportunity for students to apply concepts and present viable arguments. Games, explorations, and hands-on activities are also strategically placed in chapters when students are learning concepts. During these collaborative experiences, students interact with one another to construct viable arguments and critique the reasoning of others in a constructive manner. In addition, thought bubbles provide tutorial guidance throughout the entire Student Book. These scaffolded dialogues help students articulate concepts, check for understanding, analyze, justify conclusions, and self-regulate if necessary.	

Standards Descriptor	Page Citations
SMP. 4 Model with mathematics. How Math in Focus Aligns: Math in Focus follows a concrete-pictorial-abstract progression, introducing concepts first with physical manipulatives or objects, then moving to pictorial representation, and finally on to abstract symbols. A number of models are found throughout the program that support the pictorial stage of learning. Math in Focus places a strong emphasis on number and number relationships, using place-value manipulatives and place-value charts to model concepts consistently throughout the program. In all grades, operations are modeled with place-value materials so students understand how the standard algorithms work. Even the mental math instruction uses understanding of place value to model how mental arithmetic can be understood and done. These place-value models build throughout the program to cover increasingly complex concepts. Singapore math is also known for its use of model drawing, often called "bar modeling" in the U.S. Model drawing is a systematic method of representing word problems and number relationships that is explicitly taught beginning in Grade 2 and extends all the way to secondary school. Students are taught to use rectangular "bars" to represent the relationship between known and unknown numerical quantities and to solve problems related to these quantities. This gives students the tools to develop mastery and tackle problems as they become increasingly more complex.	

Standards Descriptor	Page Citations
SMP. 5 Use appropriate tools strategically. How Math in Focus Aligns: Math in Focus helps students explore the different mathematical tools that are available to them. New concepts are introduced using concrete objects, which help students break down concepts to develop mastery. They learn how to use these manipulatives to attain a better understanding of the problem and solve it appropriately. Math in Focus includes representative pictures and icons as well as thought bubbles that model the thought processes students should use with the tools. Several examples are listed below. Additional tools referenced and used in the program include clocks, money, dot paper, place-value charts, geometric tools, and figures.	
SMP. 6 Attend to precision. How Math in Focus Aligns: As seen in the Singapore Mathematics Framework, metacognition, or the ability to monitor one's own thinking, is key in Singapore math. This is modeled for students throughout Math in Focus through the use of thought bubbles, journal writing, and prompts to explain reasoning. When students are taught to monitor their own thinking, they are better able to attend to precision, as they consistently ask themselves, "does this make sense?" This questioning requires students to be able to understand and explain their reasoning to others, as well as catch mistakes early on and identify when incorrect labels or units have been used. Additionally, precise language is an important aspect of Math in Focus. Students attend to the precision of language with terms like factor, quotient, difference, and capacity.	

Houghton Mifflin Harcourt Math in Focus, Grade 1 ©2015 - Common Core Edition correlated to the
Common Core State Standards for Mathematics, Grade 1

Standards Descriptor	Page Citations
SMP. 7 Look for and make use of structure. How Math in Focus Aligns: The inherent pedagogy of Singapore math allows students to look for, and make use of, structure. Place value is one of the underlying principles in Math in Focus. Concepts in the program start simple and grow in complexity throughout the chapter, year, and grade. This helps students master the structure of a given skill, see its utility, and advance to higher levels. Many of the models in the program, particularly number bonds and bar models, allow students to easily see patterns within concepts and make inferences. As students progress through grade levels, this level of structure becomes more advanced.	For example: SE/TE-1A: $26,87-93,141,189-194,220-221$ Workbook 1A: $26 \mathrm{~A}, 93 \mathrm{~A}, 141 \mathrm{~A}, 141 \mathrm{~B}, 194 \mathrm{~A}, 221 \mathrm{~A}$ SE/TE-1B: $18-22,66-75,76-77,150,249,267$ Workbook 1B: $22,22 \mathrm{~A}, 73 \mathrm{~A}, 738,77 \mathrm{~A}, 150 \mathrm{~A}, 249 \mathrm{~A}, 267 \mathrm{~A}$
SMP. 8 Look for and express regularity in repeated reasoning. How Math in Focus Aligns: A strong foundation in place value, combined with modeling tools such as bar modeling and number bonds, gives students the foundation they need to look for and express regularity in repeated reasoning. Operations are taught with place value materials so students understand how the standard algorithms work in all grades. Even the mental math instruction uses understanding of place value to model how mental arithmetic can be understood and done. This allows students to learn shortcuts for solving problems and understand why they work. Additionally, because students are given consistent tools for solving problems, they have the opportunity to see the similarities in how different problems are solved and understand efficient means for solving them. Throughout the program, students see regularity with the reasoning and patterns between the four key operations. Students continually evaluate the reasonableness of solutions throughout the program; the consistent models for solving, checking, and selfregulation help them validate their answers.	

Standards	Descriptor		Page Citations
Standards for Mathematical Content			
1.0A	Operations and Algebraic Thinking		
Represent and solve problems involving addition and subtraction			
1.OA. 1	Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.	SE/TE-1A: Workbook 1A: SE/TE-1B: Workbook 1B:	$\begin{aligned} & 42-45,59-62,69-78 \mathrm{~A}, 84-86,87-93,198-200 \\ & 215-220 \\ & 49 \mathrm{~A}, 49 \mathrm{~B}, 54,54 \mathrm{~A}, 63,75,75 \mathrm{~A}, 78,78 \mathrm{~A}, 86 \\ & 93 \mathrm{~A}, 219 \\ & 123-131,143-149 \\ & 131 \mathrm{~A}, 149 \end{aligned}$
1.OA. 2	Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20 , e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.	SE/TE-1A: Workbook 1A: SE/TE-1B: Workbook 1B:	$\begin{aligned} & \hline 215-220 \\ & 219 \\ & \\ & 123-131,267 \\ & 131 \mathrm{~A}, 267 \mathrm{~A} \end{aligned}$
Understand and apply properties of operations and the relationship between addition and subtraction			
1.OA. 3	Apply properties of operations as strategies to add and subtract.	SE/TE-1A: Workbook 1A: SE/TE-1B: Workbook 1B:	$\begin{aligned} & 30-36,42-54,55-58,198-200,220-221 \\ & 33 \mathrm{~A}, 33 \mathrm{~B}, 33 \mathrm{C}, 49 \mathrm{~A}, 49 \mathrm{~B}, 54,54 \mathrm{~A}, 221 \mathrm{~A} . \\ & 119-122,134-137,138-142,143-149,150 \\ & 122 \mathrm{~A}, 142 \mathrm{~A}, 149,150 \mathrm{~A} \end{aligned}$
1.OA. 4	Understand subtraction as an unknown-addend problem.	SE/TE-1A: Workbook 1A: SE/TE-1B: Workbook 1B:	$\begin{aligned} & 69-78 \mathrm{~A}, 79-83,84-86,87-93,94-95,201-204, \\ & 209-214,215-220 \\ & 75,75 \mathrm{~A}, 78,78 \mathrm{~A}, 83 \mathrm{~A}, 86,93 \mathrm{~A}, 95 \mathrm{~A}, 214 \mathrm{~A}, \\ & 214 \mathrm{~B}, 219 \\ & 101-110,111-118,123-131,134-137,234-241, \\ & 242-248 \\ & 110 \mathrm{~A}, 118 \mathrm{~A}, 131 \mathrm{~A}, 241 \mathrm{~A}, 248 \mathrm{~A}, 248 \mathrm{~B} \end{aligned}$

Houghton Mifflin Harcourt Math in Focus, Grade 1 ©2015 - Common Core Edition correlated to the Common Core State Standards for Mathematics, Grade 1

Standards	Descriptor		Page Citations
Add and subtract within 20			
1.OA. 5	Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).	SE/TE-1A: Workbook 1A: SE/TE-1B: Workbook 1B:	$\begin{aligned} & 42-54,55-58,69-78 \mathrm{~A}, 189-194 \\ & 49 \mathrm{~A}, 49 \mathrm{~B}, 54,54 \mathrm{~A}, 75,75 \mathrm{~A}, 78,78 \mathrm{~A} \\ & \\ & 57-62,84-93,182-192,196-212 \\ & 62 \mathrm{~A}, 93 \mathrm{~A}, 192,192 \mathrm{~A}, 211 \mathrm{~A}, 211 \mathrm{~B} \end{aligned}$
1.OA. 6	Add and subtract within 20, demonstrating fluency for addition and subtraction within 10 . Use strategies such as counting on; making ten (e.g., $8+6=8+2+4=10+4$ $=14$); decomposing a number leading to a ten (e.g., $13-$ $4=13-3-1=10-1=9$); using the relationship between addition and subtraction (e.g., knowing that $8+$ $4=12$, one knows $12-8=4$); and creating equivalent but easier or known sums (e.g., adding $6+7$ by creating the known equivalent $6+6+1=12+1=13$).	SE/TE-1A: Workbook 1A: SE/TE-1B: Workbook 1B:	$\begin{aligned} & 37,55-58,59-62,69-78 \mathrm{~A}, 79-83,84-86,87-95, \\ & 201-208 \\ & 37 \mathrm{~A}, 58 \mathrm{~A}, 63,75,75 \mathrm{~A}, 78,78,83 \mathrm{~A}, 86,93 \mathrm{~A}, \\ & 203,203 \mathrm{~A}, 205 \mathrm{~A}, 208 \mathrm{~A}, 214,214 \mathrm{~B} \\ & 80-83,119-122,123-131,138-142,143-149, \\ & 252-253 \\ & 122 \mathrm{~A}, 131 \mathrm{~A}, 142 \mathrm{~A}, 149 \end{aligned}$
Work with addition and subtraction equations			
1.0A. 7	Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false.	SE/TE-1A: Workbook 1A: SE/TE-1B: Workbook 1B:	$\begin{aligned} & 42-54,55-58,59-62,63,69-78,79-83,84-86,87- \\ & 93,94-95,201-208,209-214,215-220 \\ & 49 \mathrm{~A}, 49 \mathrm{~B}, 54,54 \mathrm{~A}, 58 \mathrm{~A}, 63,63 \mathrm{~A}, 75,75 \mathrm{~A}, 78 \text {, } \\ & 78 \mathrm{~A}, 83 \mathrm{~A}, 86,93 \mathrm{~A}, 95 \mathrm{~A}, 203,205 \mathrm{~A}, 208 \mathrm{~A}, \\ & 214 \mathrm{~A}, 214 \mathrm{~B}, 219 \\ & 84-93,101-110,111-118,119-122,123-131, \\ & 138-142,143-149,221-227,228-233,234-241 \text {, } \\ & 242-248,254-258,296-301 \\ & 93 \mathrm{~A}, 110 \mathrm{~A}, 118 \mathrm{~A}, 122 \mathrm{~A}, 131 \mathrm{~A}, 131 \mathrm{~B}, 142 \mathrm{~A}, \\ & 149,227 \mathrm{~A}, 233 \mathrm{~A}, 233 \mathrm{~B}, 241 \mathrm{~A}, 248 \mathrm{~A}, 248 \mathrm{~B}, \\ & 258 \mathrm{~A}, 258 \mathrm{~B}, 301 \mathrm{~A}, 301 \mathrm{~B}, 301 \mathrm{C} \end{aligned}$

Houghton Mifflin Harcourt Math in Focus, Grade 1 ©2015 - Common Core Edition correlated to the Common Core State Standards for Mathematics, Grade 1

Standards	Descriptor	Page Citations	
1.OA.8	Determine the unknown whole number in an addition or subtraction equation relating to three whole numbers.	SE/TE-1A: Workbook 1A: SE/TE-1B: Workbook 1B:	42-54, 59-62, 63, 84-86, 87-95, 201-208, 209214 $49 \mathrm{~A}, 49 \mathrm{~B}, 54,54 \mathrm{~A}, 63,63 \mathrm{~A}, 86,203,203 \mathrm{~A}$, 205A, 208A, 214A, 214B 13-17, 18-22, 30-35, 36-41, 57-62, 63-65, 66-75, 84-93, 94-100, 111-118, 119-122, 123-131, 134137, 138-142, 143-149, 221-227, 228-233, 234241, 242-248 $17 \mathrm{~A}, 22,22 \mathrm{~A}, 35 \mathrm{~A}, 41 \mathrm{~A}, 41 \mathrm{~B}, 62 \mathrm{~A}, 65,73 \mathrm{~A}$, $73 \mathrm{~B}, 93 \mathrm{~A}, 100,100 \mathrm{~A}, 118 \mathrm{~A}, 122 \mathrm{~A}, 131 \mathrm{~A}, 142 \mathrm{~A}$, $149,227 \mathrm{~A}, 233 \mathrm{~A}, 233 \mathrm{~B}, 241 \mathrm{~A}, 248 \mathrm{~A}, 248 \mathrm{~B}$
1.NBT	Number and Operations in Base Ten		
Extend the counting sequence			
1.NBT. 1	Count to 120 , starting at any number less than 120. In this range, read and write numerals and represent a number of objects with a written numeral.	SE/TE-1A: Workbook 1A: SE/TE-1B: Workbook 1B:	```4-12, 20-26, 171-176, 177-180, 189-194 12, 12A, 25A, 176A, 176B, 180A, 194A 52-56, 57-62, 63-65, 66-77, 178-181, 182-192, 193-195, 196-212 62A, 65, 73A, 73B, 192, 192A, 195A, 195B, 211A, 211B```

Houghton Mifflin Harcourt Math in Focus, Grade 1 ©2015 - Common Core Edition correlated to the Common Core State Standards for Mathematics, Grade 1

Houghton Mifflin Harcourt Math in Focus, Grade 1 ©2015 - Common Core Edition correlated to the Common Core State Standards for Mathematics, Grade 1

Standards	Descriptor		Page Citations
Use place value understanding and properties of operations to add and subtract			
1.NBT. 4	Add within 100, including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple of 10 , using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten	SE/TE-1B: Workbook 1B:	$\begin{aligned} & 84-93,94-100,111-118,123-131,138-142,143- \\ & 149,216-220,221-227,228-233,234-241,242- \\ & 248 \\ & 93 \mathrm{~A}, 100 \mathrm{~A}, 131 \mathrm{~A}, 142 \mathrm{~A}, 149,227 \mathrm{~A}, 233 \mathrm{~A}, \\ & 233 \mathrm{~B}, 241 \mathrm{~A}, 248 \mathrm{~A}, 248 \mathrm{~B} \end{aligned}$
1.NBT. 5	Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used.	SE/TE-1B: Workbook 1B:	$\begin{aligned} & \text { 138-142, 143-149 } \\ & 142 \mathrm{~A}, 149 \end{aligned}$
1.NBT. 6	Subtract multiples of 10 in the range 10-90 from multiples of 10 in the range 10-90 (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.	SE/TE-1B: Workbook 1B:	$\begin{aligned} & 101-110,111-118,234-241 \\ & 110 \mathrm{~A}, 241 \mathrm{~A} \end{aligned}$

Houghton Mifflin Harcourt Math in Focus, Grade 1 ©2015 - Common Core Edition correlated to the Common Core State Standards for Mathematics, Grade 1

Standards	Descriptor		Page Citations
1.MD	Measurement and Data		
Measure lengths indirectly and by iterating length units			
1.MD.1	Order three objects by length; compare the lengths of two objects indirectly by using a third object.	SE/TE-1A: Workbook 1A: SE/TE-1B:	$\begin{aligned} & 232-236,246-252,253 \\ & 236,236 \mathrm{~A}, 252 \mathrm{~A}, 253 \mathrm{~A} \\ & 1-5 \end{aligned}$
1.MD. 2	Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. Limit to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps.	SE/TE-1A: Workbook 1A: SE/TE-1B:	$\begin{aligned} & 240-245,246-252 \\ & 245 \mathrm{~A}, 252,252 \mathrm{~A} \\ & 1-5 \end{aligned}$
Tell and write time			
1. MD. 3	Tell and write time in hours and half-hours using analog and digital clocks	SE/TE-1B: Workbook 1B:	$\begin{aligned} & 164-169,170-175,176 \\ & 169 \mathrm{~A}, 169 \mathrm{~B}, 175 \mathrm{~A}, 175 \mathrm{~B}, 176 \mathrm{~A} \end{aligned}$
Represent and interpret data			
1.MD. 4	Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.	SE/TE-1B: Workbook 1B:	$\begin{aligned} & 30-35,36-41,49 \\ & 35 \mathrm{~A}, 41 \mathrm{~A}, 41 \mathrm{~B}, 49 \mathrm{~A} \end{aligned}$

Houghton Mifflin Harcourt Math in Focus, Grade 1 ©2015 - Common Core Edition correlated to the Common Core State Standards for Mathematics, Grade 1

Standards	Descriptor		Page Citations
1.G	Geometry		
Reason with shapes and their attributes			
1.G. 1	Distinguish between defining attributes (e.g., triangles are closed and three-sided) versus non-defining attributes (e.g., color, orientation, overall size); build and draw shapes to possess defining attributes.	SE/TE-1A: Workbook 1A:	$\begin{aligned} & 102-115,141 \\ & 109 \mathrm{~A}, 110,115,115 \mathrm{~A}, 141 \mathrm{~A}, 141 \mathrm{~B} \end{aligned}$
1.G. 2	Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles) or three-dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape.	SE/TE-1A: Workbook 1A:	$\begin{aligned} & 102-115,122-129 \\ & 109 \mathrm{~A}, 110,115,115 \mathrm{~A}, 126,126 \mathrm{~A}, 129 \end{aligned}$
1.G.3	Partition circles and rectangles into two and four equal shares, describe the shares using the words halves, fourths, and quarters, and use the phrases half of, fourth of, and quarter of. Describe the whole as two of, or four of the shares. Understand for these examples that decomposing into more equal shares creates smaller shares	SE/TE-1A: Workbook 1A:	$\begin{aligned} & 102-115,122-129 \\ & 109 \mathrm{~A}, 110,115,115 \mathrm{~A}, 126,126 \mathrm{~A}, 129 \end{aligned}$

