## Math in

 Focus Singapore Math ${ }^{\circ}$ by Marshall Cavendish ${ }^{\circ}$MC | Marshall Cavendish |
| :---: |
| Education |

hmhco.com/mathinfocus
Connect with us:
y If in © Yourub


Correlation to the Common Core State Standards for Mathematics

Math in Focus ${ }^{\circ}$
© 2015
Grade 3


## Houghton Mifflin Harcourt <br> Math in Focus, Grade 3 ©2015 <br> Common Core Edition

correlated to the

## Common Core State Standards for Mathematics <br> Grade 3

| Standards Descriptor | Page Citations |
| :---: | :---: |
| Standards for Mathematical Practice |  |
| SMP. 1 Make sense of problems and persevere in solving them. <br> How Math in Focus Aligns: <br> Math in Focus is built around the Singapore Ministry of Education's mathematics framework pentagon, which places mathematical problem solving at the core of the curriculum. Encircling the pentagon are the skills and knowledge needed to develop successful problem solvers, with concepts, skills, and processes building a foundation for attitudes and metacognition. Math in Focus is based on the premise that in order for students to persevere and solve both routine and non-routine problems, they need to be given tools that they can use consistently and successfully. They need to understand both the how and the why of math so that they can self-monitor and become empowered problem solvers. This in turn spurs positive attitudes that allow students to solidify their learning and enjoy mathematics. Math in Focus teaches content through a problem solving perspective. Strong emphasis is placed on the concrete-to-pictorial-toabstract progress to solve and master problems. This leads to strong conceptual understanding. Problem solving is embedded throughout the program. |  |


| Standards | Descriptor | Page Citations |
| :--- | :--- | :--- |
| SMP.2 Reason abstractly and quantitatively. | SE/TE-3A: | 20-31, 32, 64-68, 69, 84-87, 89, 114, 122-126, <br>  <br> How Math in Focus Aligns: |
| Math in Focus' concrete-pictorial-abstract progression helps students <br> effectively contextualize and decontextualize situations by developing a <br> deep mastery of concepts. Each topic is approached with the expectation <br> that students will understand both how it works, and also why. Students <br> start by experiencing the concept through hands-on manipulative use. | SE/TE-3B: | 219-223, 231-234, 256-262, 263 <br> Then, they must translate what they learned in the concrete stage into a <br> visual representation of the concept. Finally, once they have gained a <br> strong understanding, they are able to represent the concept abstractly. <br> Once students reach the abstract stage, they have had enough exposure to <br> the concept and they are able to manipulate it and apply it in multiple <br> contexts. They are also able to extend and make inferences; this prepares <br> them for success in more advanced levels of mathematics. They are able to <br> both use the symbols and also understand why they work, which allows <br> students to relate them to other situations and apply them effectively. |


| Standards Descriptor | Page Citations |
| :---: | :---: |
| SMP. 3 Construct viable arguments and critique the reasoning of others. <br> How Math in Focus Aligns: <br> As seen on the Singapore Mathematics Framework pentagon, metacognition is a foundational part of the Singapore curriculum. Students are taught to self-monitor, so they can determine whether or not their solutions make sense. Journal questions and other opportunities to explain their thinking are found throughout the program. Students are systematically taught to use visual diagrams to represent mathematical relationships in such a way as to not only accurately solve problems, but also to justify their answers. Chapters conclude with a Put on Your Thinking Cap! problem. This is a comprehensive opportunity for students to apply concepts and present viable arguments. Games, explorations, and hands-on activities are also strategically placed in chapters when students are learning concepts. During these collaborative experiences, students interact with one another to construct viable arguments and critique the reasoning of others in a constructive manner. In addition, thought bubbles provide tutorial guidance throughout the entire Student Book. These scaffolded dialogues help students articulate concepts, check for understanding, analyze, justify conclusions, and self-regulate if necessary. | SE/TE-3A: $20-31,79-83,125,138-150,181$ <br> Workbook 3A: $29,29 A, 181$ |
|  | $\begin{array}{ll} \text { SE/TE-3B: } & 91-96,130-148,149-155,213,268-276,305- \\ & 320,339,349-355,365-373,374-383 \\ \text { Workbook 3B: } & 96 \mathrm{~A}-96 \mathrm{~B}, 155,155 \mathrm{~A}, 213 \mathrm{~A}, 276 \mathrm{~A}, 339 \mathrm{~A}, 355 \mathrm{~A}, \\ & 373 \mathrm{~A} \end{array}$ |

Houghton Mifflin Harcourt Math in Focus, Grade 3 ©2015 - Common Core Edition correlated to the Common Core State Standards for Mathematics, Grade 3

| Standards Descriptor | Page Citations |
| :---: | :---: |
| SMP. 4 Model with mathematics. <br> How Math in Focus Aligns: <br> Math in Focus follows a concrete-pictorial-abstract progression, introducing concepts first with physical manipulatives or objects, then moving to pictorial representation, and finally on to abstract symbols. A number of models are found throughout the program that support the pictorial stage of learning. Math in Focus places a strong emphasis on number and number relationships, using place-value manipulatives and place-value charts to model concepts consistently throughout the program. In all grades, operations are modeled with place-value materials so students understand how the standard algorithms work. Even the mental math instruction uses understanding of place value to model how mental arithmetic can be understood and done. These place-value models build throughout the program to cover increasingly complex concepts. Singapore math is also known for its use of model drawing, often called "bar modeling" in the U.S. Model drawing is a systematic method of representing word problems and number relationships that is explicitly taught beginning in Grade 2 and extends all the way to secondary school. Students are taught to use rectangular "bars" to represent the relationship between known and unknown numerical quantities and to solve problems related to these quantities. This gives students the tools to develop mastery and tackle problems as they become increasingly more complex. |  |


| Standards Descriptor | Page Citations |
| :---: | :---: |
| SMP. 5 Use appropriate tools strategically. <br> How Math in Focus Aligns: <br> Math in Focus helps students explore the different mathematical tools that are available to them. New concepts are introduced using concrete objects, which help students break down concepts to develop mastery. They learn how to use these manipulatives to attain a better understanding of the problem and solve it appropriately. Math in Focus includes representative pictures and icons as well as thought bubbles that model the thought processes students should use with the tools. Several examples are listed below. Additional tools referenced and used in the program include clocks, money, dot paper, place-value charts, geometric tools, and figures. |  |
| SMP. 6 Attend to precision. <br> How Math in Focus Aligns: <br> As seen in the Singapore Mathematics Framework, metacognition, or the ability to monitor one's own thinking, is key in Singapore math. This is modeled for students throughout Math in Focus through the use of thought bubbles, journal writing, and prompts to explain reasoning. When students are taught to monitor their own thinking, they are better able to attend to precision, as they consistently ask themselves, "does this make sense?" This questioning requires students to be able to understand and explain their reasoning to others, as well as catch mistakes early on and identify when incorrect labels or units have been used. Additionally, precise language is an important aspect of Math in Focus. Students attend to the precision of language with terms like factor, quotient, difference, and capacity. |  |

Houghton Mifflin Harcourt Math in Focus, Grade 3 ©2015 - Common Core Edition correlated to the
Common Core State Standards for Mathematics, Grade 3

| Standards Descriptor | Page Citations |
| :---: | :---: |
| SMP. 7 Look for and make use of structure. <br> How Math in Focus Aligns: <br> The inherent pedagogy of Singapore math allows students to look for, and make use of, structure. Place value is one of the underlying principles in Math in Focus. Concepts in the program start simple and grow in complexity throughout the chapter, year, and grade. This helps students master the structure of a given skill, see its utility, and advance to higher levels. Many of the models in the program, particularly number bonds and bar models, allow students to easily see patterns within concepts and make inferences. As students progress through grade levels, this level of structure becomes more advanced. | SE/TE-3A: $20-31,32,114$ <br> Workbook 3A: $29,29 \mathrm{~A}, 32,114 \mathrm{~A}$ <br>   <br> SE/TE-3B: $75,130-148,149-155,339,365-373$ <br> Workbook 3B: $75 \mathrm{~A}, 147 \mathrm{~A}-148,155,155 \mathrm{~A}, 339 \mathrm{~A}, 373 \mathrm{~A}$ |
| SMP. 8 Look for and express regularity in repeated reasoning. <br> How Math in Focus Aligns: <br> A strong foundation in place value, combined with modeling tools such as bar modeling and number bonds, gives students the foundation they need to look for and express regularity in repeated reasoning. Operations are taught with place value materials so students understand how the standard algorithms work in all grades. Even the mental math instruction uses understanding of place value to model how mental arithmetic can be understood and done. This allows students to learn shortcuts for solving problems and understand why they work. Additionally, because students are given consistent tools for solving problems, they have the opportunity to see the similarities in how different problems are solved and understand efficient means for solving them. Throughout the program, students see regularity with the reasoning and patterns between the four key operations. Students continually evaluate the reasonableness of solutions throughout the program; the consistent models for solving, checking, and selfregulation help them validate their answers. |  |

Houghton Mifflin Harcourt Math in Focus, Grade 3 ©2015 - Common Core Edition correlated to the Common Core State Standards for Mathematics, Grade 3

| Standards | Descriptor | Page Citations |  |
| :---: | :---: | :---: | :---: |
| Standards for Mathematical Content |  |  |  |
| 3.0A | Operations and Algebraic Thinking |  |  |
| Represent and solve problems involving multiplication and division. |  |  |  |
| 3.0A.1 | Interpret products of whole numbers, e.g., interpret $5 \times 7$ as the total number of objects in 5 groups of 7 objects each. | $\begin{aligned} & \hline \text { SE/TE-3A: } \\ & \text { Workbook 3A: } \end{aligned}$ | $\begin{aligned} & 132-137,151-157,158-162,163-167 \\ & 157,157 \mathrm{~A}, 162,162 \mathrm{~A}, 167 \mathrm{~A} \end{aligned}$ |
| 3.OA. 2 | Interpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. | SE/TE-3A: <br> Workbook 3A: | $\begin{aligned} & 132-137,176-177,1-78-180,214-215 \\ & 177 \mathrm{~A}, 180 \mathrm{~A} \end{aligned}$ |
| 3.OA. 3 | Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. | SE/TE-3A: <br> Workbook 3A: <br> SE/TE 3B: <br> Workbook 3B: | $\begin{aligned} & 151-157,158-162,163-167,168-175,176-177, \\ & 178-180,219-223,227-230,231-234,240-242, \\ & 243-245,246-252,253-255,256-262 \\ & 157,157 \mathrm{~A}, 162,162 \mathrm{~A}, 167 \mathrm{~A}, 175 \mathrm{~A}, 177 \mathrm{~A}, \\ & 180 \mathrm{~A}, 223,245 \mathrm{~A}, 252 \mathrm{~A}-252 \mathrm{C}, 255 \mathrm{~A}, 262, \\ & 262 \mathrm{~A}-2628 \\ & 59-62,63-68,69-74 \\ & 68 \mathrm{~A}, 74,74 \mathrm{~A} \end{aligned}$ |
| 3.OA. 4 | Determine the unknown whole number in a multiplication or division equation relating three whole numbers. | SE/TE-3A: <br> Workbook 3A: <br> SE/TE-3B: <br> Workbook 3B: | $\begin{aligned} & 138-150,151-157,158-162,163-167,168-175, \\ & 176-177,178-180,191-193,194-198,199-209, \\ & 216-218,219-223,224-226,227-230,231-234, \\ & 243-245,246-252,253-255,256-262 \\ & 150 \mathrm{~A}, 157,157 \mathrm{~A}, 162,162 \mathrm{~A}, 167 \mathrm{~A}, 175 \mathrm{~A}, \\ & 177 \mathrm{~A}, 180 \mathrm{~A}, 193 \mathrm{~A}, 245 \mathrm{~A}, 252 \mathrm{~A}-252 \mathrm{C}, 255 \mathrm{~A}, \\ & 262,262 \mathrm{~A}-262 \mathrm{~B} \\ & 59-62,63-68,69-74 \\ & 68 \mathrm{~A}, 74,74 \mathrm{~A} \end{aligned}$ |

Math in Focus is published by Marshall Cavendish International (Singapore) and exclusively distributed by Houghton Mifflin Harcourt

Houghton Mifflin Harcourt Math in Focus, Grade 3 ©2015 - Common Core Edition correlated to the
Common Core State Standards for Mathematics, Grade 3

| Standards | Descriptor | Page Citations |  |
| :---: | :---: | :---: | :---: |
| Understand properties of multiplication and the relationship between multiplication and division. |  |  |  |
| 3.0A.5 | Apply properties of operations as strategies to multiply and divide. | SE/TE-3A: <br> Workbook 3A: <br> SE/TE 3B: <br> Workbook 3B: | $\begin{aligned} & \text { 138-150, 151-157, 158-162, 163-167, 168-175, } \\ & 176-177,178-180,191-193,194-198,199-209 \\ & 216-218,219-223,224-226,227-230,231-234, \\ & 243-245,246-252,253-255,256-262 \\ & 150 \mathrm{~A}, 157,157 \mathrm{~A}, 162,162 \mathrm{~A}, 167 \mathrm{~A}, 175 \mathrm{~A}, \\ & 177 \mathrm{~A}, 180 \mathrm{~A}, 193 \mathrm{~A}, 245 \mathrm{~A}, 252 \mathrm{~A}-252 \mathrm{C}, 255 \mathrm{~A}, \\ & 262,262 \mathrm{~A}-262 \mathrm{~B} \\ & \text { 63-68, } 69-74 \\ & 68 \mathrm{~A}, 74,74 \mathrm{~A} \end{aligned}$ |
| 3.04 .6 | Understand division as an unknown-factor problem. | SE/TE-3A: <br> Workbook 3A: <br> SE/TE-3B: <br> Workbook 3B: | $\begin{aligned} & 132-137,176-177,178-180,216-218,219-223, \\ & 224-226,227-230,231-234,253-255,256-263 \\ & 177 \mathrm{~A}, 218,223,226 \mathrm{~A} \\ & 63-68,69-74 \\ & 68 \mathrm{~A}, 74,74 \mathrm{~A} \end{aligned}$ |
| Multiply and divide within 100. |  |  |  |
| 3.04 .7 | Fluently multiply and divide within 100 , using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5$ $=8$ ) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers. | SE/TE-3A: <br> Workbook 3A: <br> SE/TE-3B: | $\begin{aligned} & 138-150,151-157,158-162,163-167,176-177, \\ & \text { 178-180, 191-193, 194-198, 199-209, 216-218, } \\ & 219-223,224-226,227-230,231-234,243-245, \\ & 246-252,253-255,256-262 \\ & \text { 150A, 157, 157A, 162, 162A, 167A }, 177 \mathrm{~A}, \\ & 180 \mathrm{~A}, 193 \mathrm{~A}, 198 \mathrm{~A}-198 \mathrm{~B}, 218,223,226 \mathrm{~A}, \\ & 245 \mathrm{~A}, 252 \mathrm{~A}-252 \mathrm{C}, 255 \mathrm{~A}, 262,262 \mathrm{~A}-262 \mathrm{~B} \\ & \text { 63-68, } 69-74 \end{aligned}$ |

Math in Focus is published by Marshall Cavendish International (Singapore) and exclusively distributed by Houghton Mifflin Harcourt

| Standards | Descriptor |  | Page Citations |
| :---: | :---: | :---: | :---: |
| Solve problems involving the four operations, and identify and explain patterns in arithmetic. |  |  |  |
| 3.OA.8 | Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. | SE/TE-3A: <br> Workbook 3A: | $\begin{aligned} & 53-63,117-121,122-126,127,132-137,181, \\ & 246-252,256-262,263 \\ & 63 \mathrm{~A}, 126 \mathrm{~A}-126 \mathrm{C}, 127 \mathrm{~A}, 181,251 \mathrm{~A}-251 \mathrm{C}, 262, \\ & 262 \mathrm{~A}-262 \mathrm{~B}, 263 \end{aligned}$ |
| 3.0A.9 | Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. | SE/TE-3A: <br> Workbook 3A: | $\begin{aligned} & 5-11,20-31,89,151-157,158-162,163-167 \text {, } \\ & 168-175,191-193,219-223,224-226 \\ & 11 \mathrm{~A}, 29,29 \mathrm{~A}, 89 \mathrm{~A}, 157,157 \mathrm{~A}, 162,162 \mathrm{~A}, \\ & 167 \mathrm{~A}, 193 \mathrm{~A}, 223,226 \mathrm{~A} \end{aligned}$ |
| 3.NBT | Number and Operations in Base Ten |  |  |
| Use place value understanding and properties of operations to perform multi-digit arithmetic. |  |  |  |
| 3.NBT. 1 | Use place value understanding to round whole numbers to the nearest 10 or 100 . | SE/TE-3A: <br> Workbook 3A: | $\begin{aligned} & 36-40,53-63,69 \\ & 63 \mathrm{~A}, 69 \mathrm{~A} \end{aligned}$ |
| 3.NBT. 2 | Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction. | SE/TE-3A: <br> Workbook 3A: <br> SE/TE-3B: <br> Workbook 3B: | 41-44, 45-48, 49-52, 53-63, 64-69, 74-76, 77-78, 79-83, 84-87, 89, 92-93, 94-97, 98-101, 102-107, 108-113, 114, 122-126 $44 \mathrm{~A}, 48 \mathrm{~A}, 52 \mathrm{~A}, 63 \mathrm{~A}, 68 \mathrm{~A}, 78 \mathrm{~A}, 83,87 \mathrm{~A}, 89 \mathrm{~A}$, $97 \mathrm{~A}, 101 \mathrm{~A}, 106 \mathrm{~A}, 113 \mathrm{~A}, 114 \mathrm{~A}, 126 \mathrm{~A}-126 \mathrm{C}$ <br> 4-14, 15-23, 24-26, 63-68, 69-74, 374-383 <br> $14,14 \mathrm{~A}, 23,23 \mathrm{~A}, 26 \mathrm{~A}-26 \mathrm{~B}, 68 \mathrm{~A}, 74,74 \mathrm{~A}, 383$, 383A |
| 3.NBT. 3 | Multiply one-digit whole numbers by multiples of 10 in the range $10-90$ (e.g., $9 \times 80,5 \times 60$ ) using strategies based on place value and properties of operations. | SE/TE-3A: <br> Workbook 3A: | $\begin{aligned} & 32,151-157,158-162,163-167,168-175,191- \\ & 193,199-209 \\ & 18,157,157 \mathrm{~A}, 162,162 \mathrm{~A}, 167 \mathrm{~A}, 175 \mathrm{~A}, 193 \mathrm{~A} \\ & 209,209 \mathrm{~A}-209 \mathrm{C} \end{aligned}$ |

Houghton Mifflin Harcourt Math in Focus, Grade 3 ©2015 - Common Core Edition correlated to the Common Core State Standards for Mathematics, Grade 3

| Standards | Descriptor |  | Page Citations |
| :---: | :---: | :---: | :---: |
| 3.NF | Number and Operations - Fractions |  |  |
| Develop understanding of fractions as numbers. |  |  |  |
| 3.NF.1 | Understand a fraction $1 / b$ as the quantity formed by 1 part when a whole is partitioned into $b$ equal parts; understand a fraction $a / b$ as the quantity formed by $a$ parts of size $1 / b$. | $\begin{aligned} & \text { SE/TE-3B: } \\ & \text { Workbook 3B: } \end{aligned}$ | $\begin{aligned} & 112-116,121-125,126-129,149-155,163-167 \\ & 125 \mathrm{~A}, 129 \mathrm{~A}, 155,155 \mathrm{~A} \end{aligned}$ |
| 3.NF. 2 | Understand a fraction as a number on the number line; represent fractions on a number line diagram. |  |  |
| 3.NF.2.a | Represent a fraction $1 / b$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into $b$ equal parts. Recognize that each part has size $1 / b$ and that the endpoint of the part based at 0 locates the number $1 / b$ on the number line. | $\begin{aligned} & \text { SE/TE-3B: } \\ & \text { Workbook 3B: } \end{aligned}$ | $\begin{aligned} & 117-120,121-125,130-148 \\ & 125 \mathrm{~A}, 147 \mathrm{~A}-148 \end{aligned}$ |
| 3.NF.2.b | Represent a fraction $a / b$ on a number line diagram by marking off $a$ lengths $1 / b$ from 0 . Recognize that the resulting interval has size $a / b$ and that its endpoint locates the number $a / b$ on the number line. | $\begin{aligned} & \text { SE/TE-3B: } \\ & \text { Workbook 3B: } \end{aligned}$ | $\begin{aligned} & \text { 121-125, 130-148, 163-167 } \\ & \text { 147A-148 } \end{aligned}$ |
| 3.NF. 3 | Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size. |  |  |
| 3.NF.3.a | Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line. | SE/TE-3B: <br> Workbook 3B: | $\begin{aligned} & 121-125,126-129,130-148 \\ & 125 \mathrm{~A}, 129 \mathrm{~A} \end{aligned}$ |
| 3.NF.3.b | Recognize and generate simple equivalent fractions, e.g., $1 / 2=2 / 4,4 / 6=2 / 3$ ). Explain why the fractions are equivalent, e.g., by using a visual fraction model. | $\begin{aligned} & \text { SE/TE-3B: } \\ & \text { Workbook 3B: } \end{aligned}$ | $\begin{aligned} & 121-125,126-129,130-148 \\ & 125 \mathrm{~A}, 129 \mathrm{~A} \end{aligned}$ |
| 3.NF.3.c | Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. | $\begin{aligned} & \text { SE/TE-3B: } \\ & \text { Workbook 3B: } \end{aligned}$ | $\begin{aligned} & 112-116,117-120,149-155 \\ & 120 \mathrm{~A}, 155-155 \mathrm{~A} \end{aligned}$ |

Houghton Mifflin Harcourt Math in Focus, Grade 3 ©2015 - Common Core Edition correlated to the Common Core State Standards for Mathematics, Grade 3

| Standards | Descriptor | Page Citations |  |
| :---: | :---: | :---: | :---: |
| 3.NF.3.d | Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols $>,=$, or $<$, and justify the conclusions, e.g., by using a visual fraction model. | SE/TE-3B: <br> Workbook 3B: | $\begin{aligned} & 112-116,130-148 \\ & 147 \mathrm{~A}-148 \end{aligned}$ |
| 3.MD | Measurement and Data |  |  |
| Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects. |  |  |  |
| 3.MD.1 | Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram. | SE/TE-3B: <br> Workbook 3B: | $\begin{aligned} & 221-224,225-229,230-234,235-238,239-242, \\ & 243-249,253-260 \\ & 229 \mathrm{~A}, 234 \mathrm{~A}, 238 \mathrm{~A}, 242 \mathrm{~A}, 260 \mathrm{~A}-260 \mathrm{~B} \end{aligned}$ |
| 3.MD. 2 | Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. | $\begin{aligned} & \text { SE/TE-3B: } \\ & \text { Workbook 3B: } \end{aligned}$ | $\begin{aligned} & 31-34,42-47,48-55,63-68,69-74 \\ & 47 \mathrm{~A}, 55 \mathrm{~A} \end{aligned}$ |

Houghton Mifflin Harcourt Math in Focus, Grade 3 ©2015 - Common Core Edition correlated to the Common Core State Standards for Mathematics, Grade 3

| Standards | Descriptor |  | Page Citations |
| :---: | :---: | :---: | :---: |
| Represent and interpret data. |  |  |  |
| 3.MD. 3 | Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve oneand two-step "how many more" and "how many less" problems using information presented in scaled bar graphs. | SE/TE-3B: <br> Workbook 3B: | $\begin{aligned} & 84-90,91-96,97-104 \\ & 90 A-90 B, 96 A-96 B, 104 A-104 \mathrm{C} \end{aligned}$ |
| 3.MD. 4 | Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units - whole numbers, halves, or quarters. | SE/TE-3B: <br> Workbook 3B: | $\begin{aligned} & 97-104,168-189 \\ & 104 \mathrm{~A}-104 \mathrm{C}, 189 \mathrm{~A}-189 \mathrm{~B} \end{aligned}$ |
| Geometric Measurement: understand concepts of area and relate area to multiplication and to addition. |  |  |  |
| 3.MD. 5 | Recognize area as an attribute of plane figures and understand concepts of area measurement. |  |  |
| 3.MD.5.a | A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area. | SE/TE-3B: <br> Workbook 3B: | $\begin{aligned} & 349-355,356-364,365-373,374-383 \\ & 355,355 \mathrm{~A}, 364,364 \mathrm{~A}, 373 \mathrm{~A}, 383,383 \mathrm{~A} \end{aligned}$ |
| 3.MD.5.b | A plane figure which can be covered without gaps or overlaps by $n$ unit squares is said to have an area of $n$ square units. | SE/TE-3B: <br> Workbook 3B: | $\begin{aligned} & 349-355,356-364,365-373,374-383 \\ & 355,355 \mathrm{~A}, 364,364 \mathrm{~A}, 373 \mathrm{~A}, 383,383 \mathrm{~A} \end{aligned}$ |
| 3.MD. 6 | Measure areas by counting unit squares (square cm , square $m$, square in, square $f t$, and improvised units). | SE/TE-3B: <br> Workbook 3B: | $\begin{aligned} & 349-355,356-364,365-373,374-383 \\ & 355,355 \mathrm{~A}, 364,364 \mathrm{~A}, 373 \mathrm{~A}, 383,383 \mathrm{~A} \end{aligned}$ |

Houghton Mifflin Harcourt Math in Focus, Grade 3 ©2015 - Common Core Edition correlated to the Common Core State Standards for Mathematics, Grade 3

| Standards | Descriptor |  | Page Citations |
| :---: | :---: | :---: | :---: |
| $3 . \mathrm{MD} .7$ | Relate area to the operations of multiplication and addition. |  |  |
| 3.MD.7.a | Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths. | SE/TE-3B: <br> Workbook 3B: | $\begin{aligned} & 345-348,349-355,374-383 \\ & 355,355 \mathrm{~A} \end{aligned}$ |
| 3.MD.7.b | Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real world and mathematical problems, and represent wholenumber products as rectangular areas in mathematical reasoning. | SE/TE-3B: <br> Workbook 3B: | $\begin{aligned} & 365-373,374-383 \\ & 373 \mathrm{~A} \end{aligned}$ |
| 3.MD.7.c | Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths $a$ and $b+c$ is the sum of $a \times b$ and $a \times c$. Use area models to represent the distributive property in mathematical reasoning. | SE/TE-3A: <br> Workbook 3A: <br> SE/TE-3B: | $\begin{aligned} & 158-162,163-167,168-175 \\ & 162,162 \mathrm{~A}, 167 \mathrm{~A}, 175 \mathrm{~A} \\ & 345-348 \end{aligned}$ |
| 3.MD.7.d | Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems. | SE/TE-3A: <br> Workbook 3A: <br> SE/TE-3B: <br> Workbook 3B: | $\begin{aligned} & 158-162,163-167,168-175 \\ & 162,162 \mathrm{~A}, 167 \mathrm{~A}, 175 \mathrm{~A} \\ & 356-364,365-373,374-383 \\ & 364,364 \mathrm{~A}, 373 \mathrm{~A}, 383,383 \mathrm{~A} \end{aligned}$ |
| Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures. |  |  |  |
| 3.MD. 8 | Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters. | SE/TE-3B: <br> Workbook 3B: | $\begin{aligned} & 374-383,384-389 \\ & 383,383 A, 389 A-389 B \end{aligned}$ |

Houghton Mifflin Harcourt Math in Focus, Grade 3 ©2015 - Common Core Edition correlated to the Common Core State Standards for Mathematics, Grade 3

| Standards | Descriptor | Page Citations |
| :---: | :---: | :---: |
| 3.G | Geometry |  |
| Reason with shapes and their attributes. |  |  |
| 3.G. 1 | Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories. | SE/TE-3B: $268-276,277-280,305-320,332-338$ <br> Workbook 3B: $276,276 \mathrm{~A}, 280 \mathrm{~A}, 320,32 \mathrm{~A}-320 \mathrm{~B}, 338 \mathrm{~A}$ |
| 3.G. 2 | Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. | SE/TE-3B: $117-120,121-125,126-129,149-155$ <br> Workbook 3B: $120 \mathrm{~A}, 125 \mathrm{~A}, 129 \mathrm{~A}, 155,155 \mathrm{~A}$ |

