

SAXON Homeschool

Upper Grades Sampler

Algebra 1, Algebra 2, Geometry, Advanced Mathematics, and Calculus

Algebra 1, Algebra 2, Geometry, Advanced Mathematics, and Calculus each contain a series of lessons covering all areas of general math. Advanced Mathematics is a comprehensive precalculus course that includes advanced algebra, geometry, trigonometry, discrete mathematics, and mathematical analysis.

Each lesson in the Saxon math program presents a small portion of math content (called an increment) that builds on prior knowledge and understanding.

This sampler includes materials that are representative of the Saxon math program, including samples of lessons and other types of practice activities, such as Investigations and Labs.

We hope these materials will assist you in your evaluation of the Saxon program.

Table of Contents

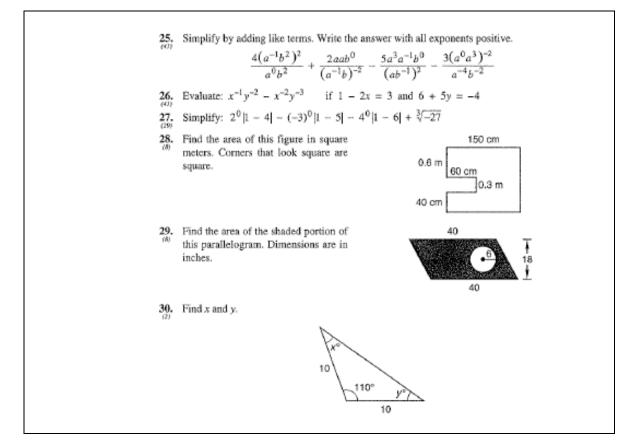
Algebra 1	3
Lesson 59, Rearranging Before Substitution	4
Lesson 75, Writing the Equation of a Line • Slope-Intercept Method of	
Graphing.	8
Lesson 99, Uniform Motion-Unequal Distances	17
Algebra 2	21
Lesson 50, Quadratic Equations • Completing the Square	22
Lesson 81, Complex Numbers and Real Numbers • Products of Complex	
Conjugates • Division of Complex Numbers	27
Lesson 103, Advanced Polynomial Division	32
Geometry	35
Lesson 15, Introduction to Polygons	36
Lesson 54, Representing Solids	43
Lab 8, Tangents to a Circle	49
Investigation 8, Patterns	51
Advanced Mathematics	54
Lesson 45, Conditional Permutations • Two-Variable Analysis Using a	
Graphing Calculator	55
Lesson 79, De Moivre's Theorem • Roots of Complex Numbers	64
Lesson 95, Advanced Complex Roots	66
Calculus	69
Lesson 24, New Denotation for the Definition of the Derivative • The	
Derivative of x^n	70
Lesson 81, Solids of Revolution II: Washers	74
Lesson 116, Series	80

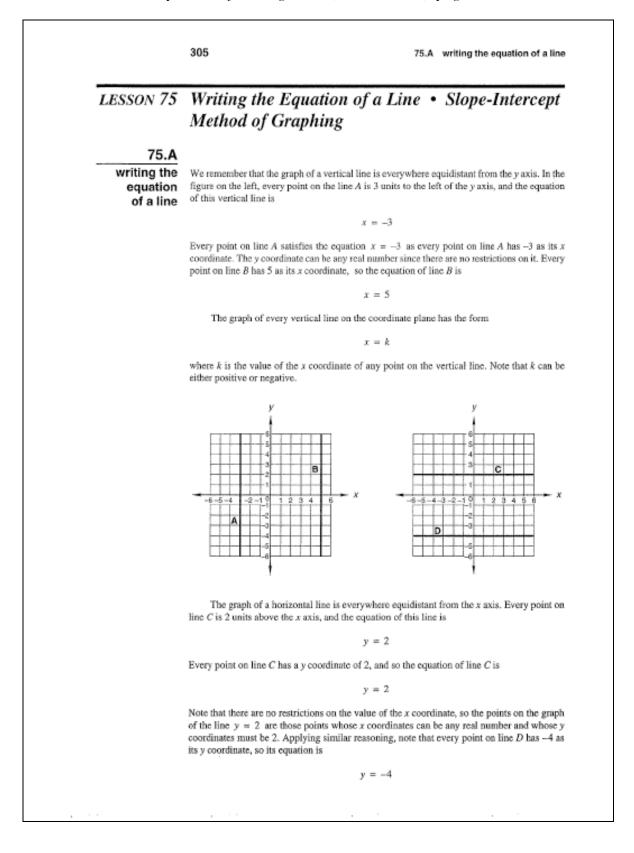
Algebra 1 Table of Contents

Lesson 59, Rearranging Before Substitution	4
Lesson 75, Writing the Equation of a Line • Slope-Intercept Method of	
Graphing.	8
Lesson 99, Uniform Motion-Unequal Distances	17

Algebra 1, Lesson 59 Sample taken from Algebra 1 (Third Edition), page 239

Γ


	239 Lesson 59 Rearranging Before Substitute		
LESSON 59	Rearranging Before Substitution		
	In every substitution problem encountered thus far, one of the equations has expressed x in terms of y , as in the bottom equation in (a), or y in terms of x , as in the top equation in (b).		
	(a) $\begin{cases} 2x + 3y = 5 \\ x = 2y + 3 \end{cases}$ (b) $\begin{cases} y = 2x + 4 \\ 2x - y = 7 \end{cases}$		
	If neither of the equations is in one of these forms, we begin by rearranging one of the equations.		
example 59.1	Use substitution to solve for x and y: (a) $\begin{cases} x - 2y = -1 \\ (b) \end{cases} \begin{cases} x - 3y = 4 \end{cases}$		
solution	To use substitution to solve this system of equations, it is necessary to rearrange one of the equations. We choose to solve for x in equation (a) because the x term in this equation has coefficient of 1, and thus we can solve this equation for x in just one step.		
	$\frac{x - 2y = -1}{x + 2y} = \frac{2y - 1}{2y - 1}$ equation (a) added 2y to both sides		
	Now we can substitute the expression $2y - 1$ for x in equation (b) and complete the solution		
	2x - 3y = 4 equation (b)		
	2(2y - 1) - 3y = 4 substituted $2y - 1$ for x		
	4y - 2 - 3y = 4 multiplied		
	y - 2 = 4 added like terms		
	y = 6 added 2 to both sides		
	We can find the value of x by replacing the variable y with the number 6 in either of the origin equations. We will use both of the original equations to demonstrate that either one can be use to find x.		
	USING EQUATION (a) USING EQUATION (b)		
	x - 2y = -1 $2x - 3y = 4$		
	$x - 2(6) = -1 \qquad 2x - 3(6) = 4$		
	x - 12 = -1 $2x - 18 = 4$		
	x = 11 $x = 11$		
	Thus the ordered pair of x and y that will satisfy both equations is (11, 6).		
example 59.2	Use substitution to solve for x and y: (a) $\begin{cases} 2x - y = 10 \\ (b) \end{cases} \begin{cases} 4x - 3y = 16 \end{cases}$		
solution	We will first solve equation (a) for y and then substitute the resulting expression for y equation (b).		
	2x - y = 10 equation (a) -2x - 2x added -2x to both sides -y = 10 - 2x y = -10 + 2x multiplied both sides by -1		
	y = -10 + 2x multiplied both sides by $-x$		


Sample taken from Algebra 1 (Third Edition), page 240

240 Lesson 59 Now we substitute -10 + 2x for y in equation (b). 4x - 3y = 16equation (b) 4x - 3(-10 + 2x) = 16substituted -10 + 2x for y 4x + 30 - 6x = 16multiplied -2x + 30 = 16added like terms -2x = -14added -30 to both sides x = 7divided both sides by -2 To finish the solution, we can use either of the original equations to solve for y. USING EQUATION (a) USING EQUATION (b) 4x - 3y = 162x - y = 102(7) - y = 104(7) - 3y = 1628 - 3y = 1614 - y = 10-y = -4-3y = -12y = 4y = 4Thus the solution is the ordered pair (7, 4). example 59.3 Use substitution to solve for x and y: (a) 4x - 2y = 38(b) 2x + y = 25solution We will first solve equation (b) for y and then substitute the resulting expression for y in equation (a). $\frac{2x + y = 25}{-2x} - \frac{2x}{y = 25 - 2x}$ equation (b) added -2x to both sides Now we substitute 25 - 2x for y in equation (a). 4x - 2y = 38equation (a) 4x - 2(25 - 2x) = 38substituted 25 - 2x for y 4x - 50 + 4x = 38multiplied 8x = 88simplified x = 11divided both sides by 8 To finish the solution, we can use either of the original equations to solve for y. USING EQUATION (a) USING EQUATION (b) 4x - 2y = 382x + y = 254(11) - 2y = 382(11) + y = 2522 + y = 2544 - 2y = 38-2y = -6y = 3y = 3Thus the solution is the ordered pair (11, 3). practice Use substitution to solve for x and y: $\begin{cases} x - 3y = -7\\ 2x - 3y = 4 \end{cases}$ **b.** $\begin{cases} 4x - y = 41 \\ 2x + y = 25 \end{cases}$

ſ

problem set 1. 59 1. 100				
59 (28) the camera. What was the original price of the camera? Draw a diagram as an aid in				
2. The weight of the elephant was 1040 percent of the weight of the bear. If the elephant weighed 20,800 pounds, what did the bear weigh? Draw a diagram as an aid in solving the problem.				
3. The gallimaufry contained things large and small in the ratio of 7 to 2. If the total was 1098 items, how many were large?				
4. Given the sets $A = \{-3, -2, -1\}, B = \{1, 2, 3\}, \text{ and } C = \{-1, 1, -2, 2, -3, 3\}, \text{ are the following statements true or false?}$				
(a) $-3 \in A$ (b) $-2 \in B$ (c) $2 \notin C$ (d) $3 \notin C$				
 Write a conjunction that describes this graph. 				
-1 0 1 2 3 4 5 6 7				
6. 2.625 of what number is 8.00625? 7. If $g(x) = -\sqrt{x}$, find $g(9)$.				
8. Solve: $1.591 + 0.003k - 0.002 + 0.002k = -(0.003 - k)$				
Simplify:				
$\frac{1}{x}$ 10. $\frac{x+y}{x}$				
9. $\frac{x}{a}$ 10. $\frac{x+y}{\frac{1}{c}}$				
Use substitution to solve for x and y:				
11. $\begin{cases} 2x - 3y = 5\\ x = -2y - 8 \end{cases}$ 12. $\begin{cases} x + 2y = 5\\ 3x - y = 1 \end{cases}$				
Graph these equations on a rectangular coordinate system:				
13. $y = -3\frac{1}{2}$ 14. $4y - 4x = 8$				
Add:				
15. $\frac{-x}{a^2b} + \frac{a-b}{b}$ 16. $\frac{m}{k(k+c)} + \frac{m}{k}$				
Add. Write the answers with all exponents positive.				
$\begin{array}{cccc} 17, & bx + cy^{-1} \\ & & 18, & x^{-1}ay^{-2} - bz^{-1} \\ & & y^{27} \end{array}$				
19. Add. Write the answer in descending order of the variable: $4(x^2 - 3x + 5) - 2(x^3 + 2x^2 - 4) - (2x^4 - 3x^3 + x^2 + 3)$				
20. Multiply. Write the answer in descending order of the variable: $(-5x - 2)(-x + 4)$				
21. Factor the greatest common factor of $12x^4yp^3 - 4x^3y^2pz - 8x^2p^2y^2$.				
Simplify. Write the answers with all exponents positive.				
$\begin{array}{cccc} 22 \\ (50) \end{array} & (4x^0y^2m)^{-2}(2y^{-4}m^0x)^4 \\ & 23 \\ (50) \end{array} & \frac{(x^2)^{-3}(yx)^2x^0}{x^2y^{-2}(xy^{-2})^3} \end{array}$				
24. Expand by using the distributive property. Write the answer with all exponents negative.				
$\left(\frac{4p^2}{m^2b^3} - \frac{4m^{-2}}{ab^2p}\right)\frac{p^{-3}m^2}{4a^{-1}b^{-3}}$				

306

Lesson 75

If we use k to represent the value of the y coordinate of any point on a horizontal line, we can say that the equation of a horizontal line is

 $\mathbf{v} = k$

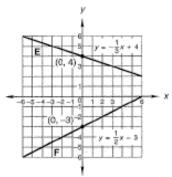
Thus, we see that the equations of vertical and horizontal lines can be determined by inspection. These equations contain an x and one number or a y and one number.

> x = -3y = +2 y = --4 ¥ = +5

The equation of a line that is neither vertical nor horizontal cannot be so simply written. However, the equations of these lines can be written in what we call the slope-intercept form. The following equations are equations of three different lines written in slope-intercept form.

(b) $y = \frac{2}{3}x - 5$ (a) y = -6x + 2(c) y = 0.007x + 3

We note that each equation contains an equals sign, a y, an x, and two numbers. The only difference in the equations is that the numbers are different.

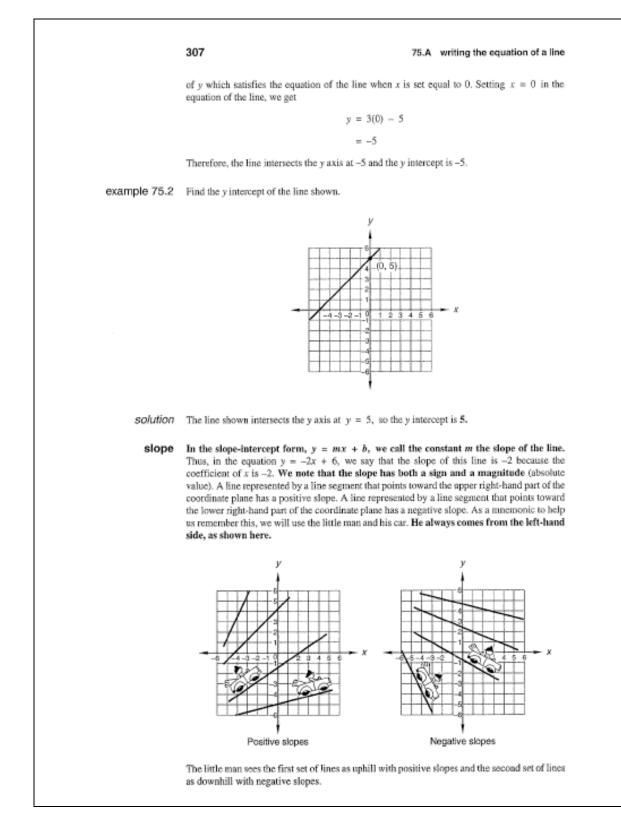

We use the letters m and b when we write this equation without specifying the two numbers.

y = mx + b

Since the equation of any line that is not a vertical line or a horizontal line can be written in this form, the problem of finding the equation of a given line is reduced to the problem of finding the two numbers that will be the values of m and b in the equation.

intercept

In the slope-intercept form of the equation y = mx + b, we will call the constant b the intercept of the equation because b is the y coordinate of the line at the point where the line intercepts the y axis. Note that b is the value of y when x has a value of 0. The figure shows the graphs of two lines. Line E intercepts the y axis at +4, so the intercept b in the equation of this line has a value of 4. Line F intercepts the y axis at -3, so the intercept b in the equation of this line has a value of -3.

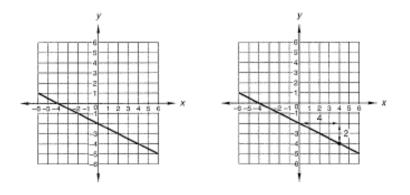


example 75.1 Find the y intercept of the line whose equation is y = 3x - 5.

solution

The equation of the line y = 3x - 5 is written in the form y = mx + b. The constant b is the y intercept, so in this case, the y intercept is -5.

Another way to solve this problem is to remember that the y intercept is the y coordinate of the point of intersection of the line and the y axis. In other words, the y intercept is the value


308

Lesson 75

The magnitude, or absolute value, of the slope is defined to be the ratio of the absolute value of the change in the y coordinate to the absolute value of the change in the x coordinate as we move from one point on the line to another point on the line.

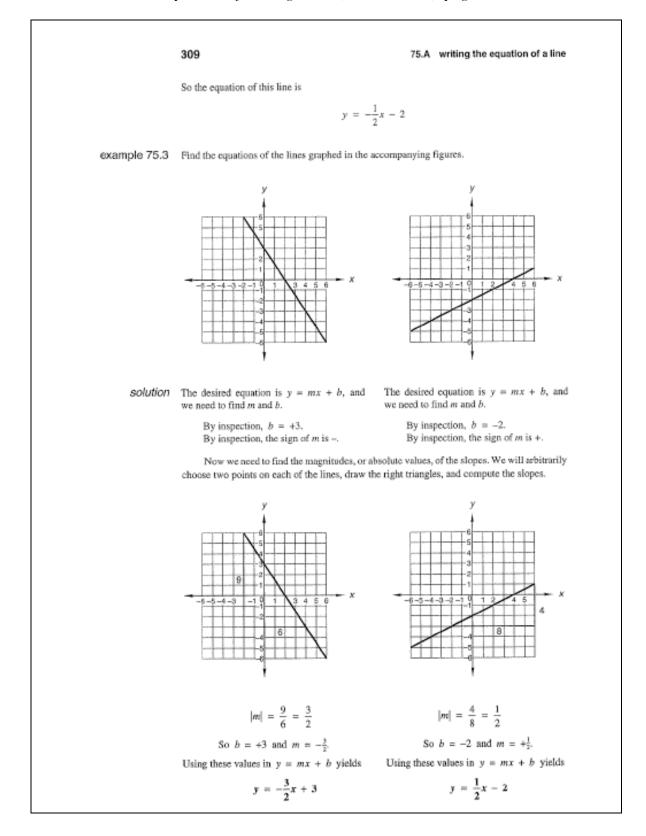
 $|m| = \frac{|\text{change in } y|}{|\text{change in } x|}$

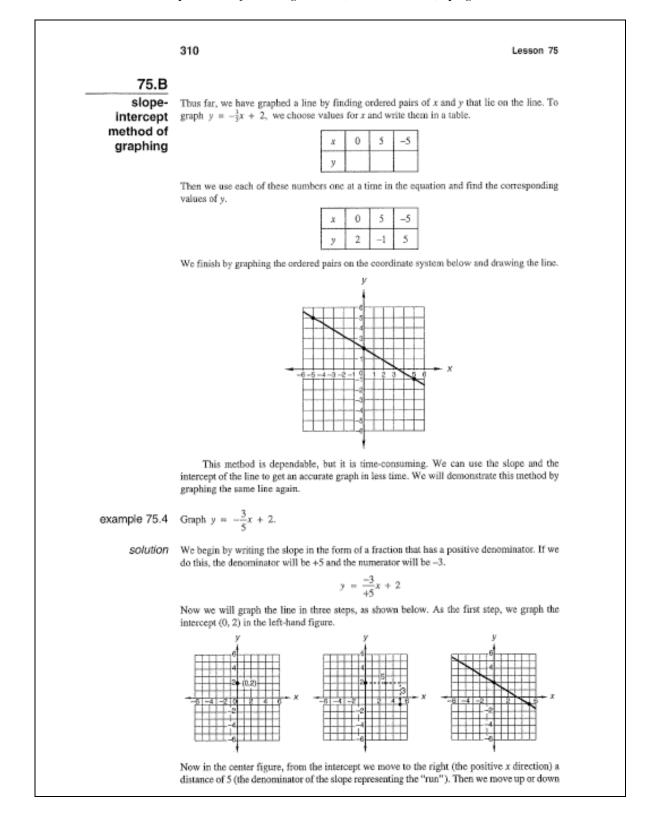
The figure on the left shows the graph of a line that has a negative slope. To find the magnitude of the slope of this line, we arbitrarily choose two points on the line, draw a right triangle, and label the lengths of the triangle. This has been done in the figure on the right.

The length of the horizontal leg of the triangle is 4 and is the difference of the x coordinates of the two points. The length of the vertical leg of the triangle is 2 and is the difference of the y coordinates of the two points. Since the magnitude of the slope is the ratio of the absolute value of the change in the y coordinate to the absolute value of the change in the x coordinate, we see that the magnitude, or absolute value, of the slope of this line is $\frac{1}{2}$.

 $|m| = \frac{|\text{change in } y|}{|\text{change in } x|} \longrightarrow |m| = \frac{2}{4} \longrightarrow |m| = \frac{1}{2}$

We call the change in x the run and the change in y the rise. Using these words, the magnitude of the slope can be defined as the absolute value of the rise over the absolute value of the run.


$$|\text{Slope}| = \frac{|\text{rise}|}{|\text{run}|}$$
 or $|m| = \frac{|\text{rise}|}{|\text{run}|}$


The general form of the equation of a line is y = mx + b, and to write the equation of this line, we need to know (1) the value of the intercept b, (2) the sign of the slope, and (3) the magnitude, or absolute value, of the slope. We see that

 The y coordinate of the point where the line intercepts the y axis is -2, so b = -2.

2. The line points to the lower right and thus the sign of the slope is negative.

The magnitude of the slope is ²/₄, which is equivalent to ¹/₂.

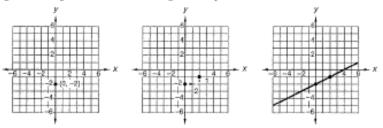
Sample taken from Algebra 1 (Third Edition), page 311

75.B slope-intercept method of graphing

the distance indicated by the numerator of the slope. We move down 3 since our numerator is -3 and the numerator represents the "rise." We graph this new point, and in the figure on the right we draw the line through the two points.

example 75.5 Use the slope-intercept method to graph the equation x - 2y = 4.

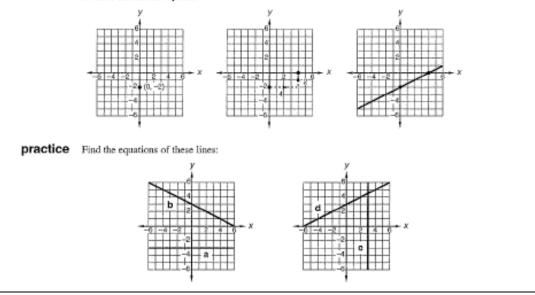
311

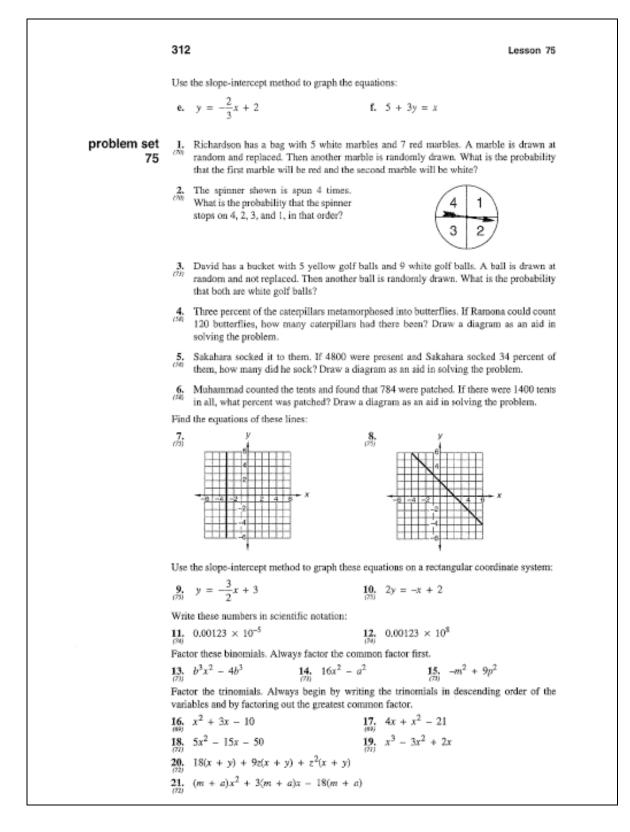

solution As the first step, we write the equation in slope-intercept form by solving for y.

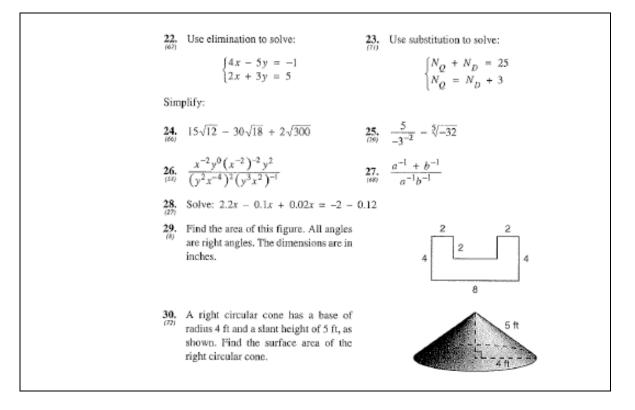
$$x - 2y = 4 \longrightarrow -2y = -x + 4 \longrightarrow 2y = x - 4 \longrightarrow y = \frac{1}{2}x - 2$$

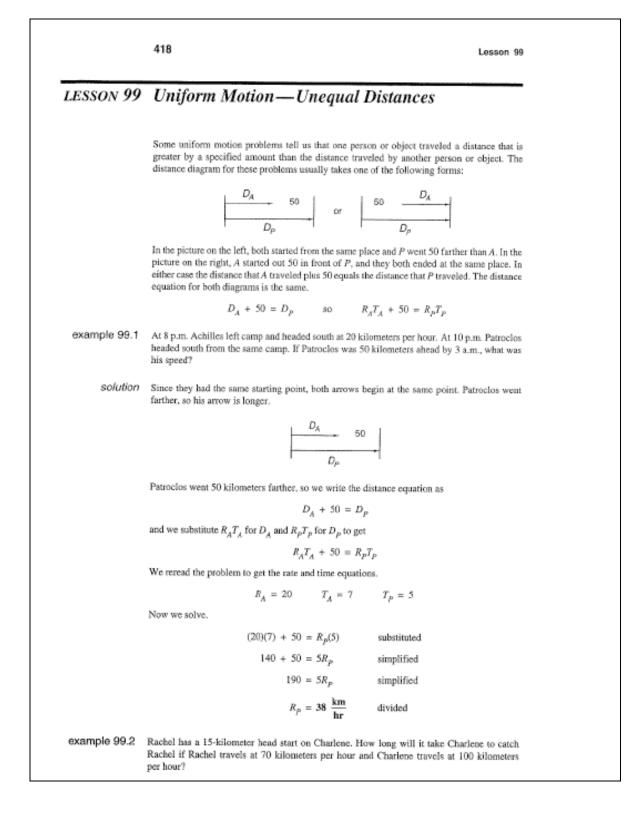
Now we write the slope as a fraction with a positive denominator.

$$y = \frac{+1}{+2}x - 2$$

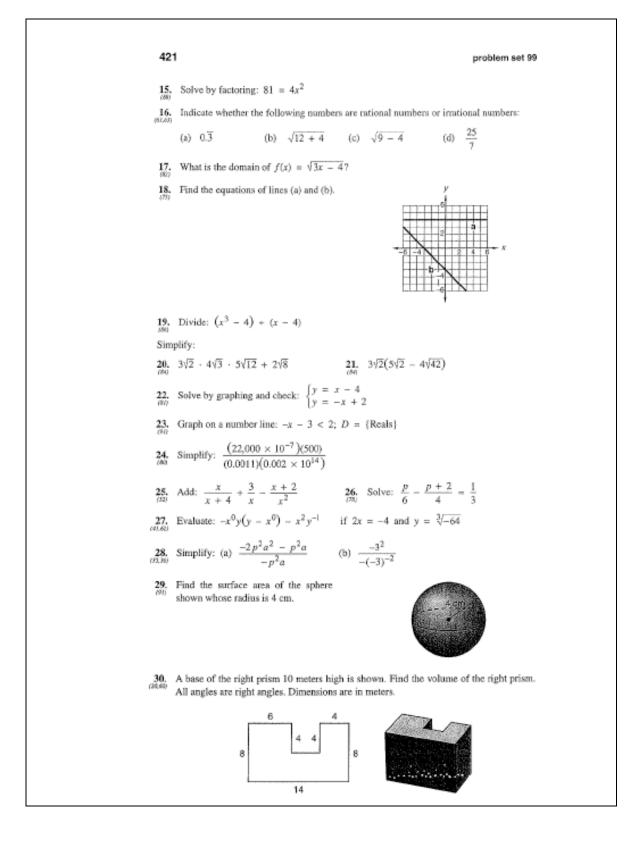

In the figure on the left we graph the intercept (0, -2). In the figure in the middle we move from the intercept a borizontal distance of +2 (to the right) and a vertical distance of +1 (up). In the figure on the right we draw the line through the two points.




When the points are close together, as in this case, it is difficult to draw the line accurately. To get another point, we multiply the denominator and the numerator of the slope by a convenient integer and use the new form of the slope to get the second point. For the line under discussion, we will multiply the slope by 2 and get

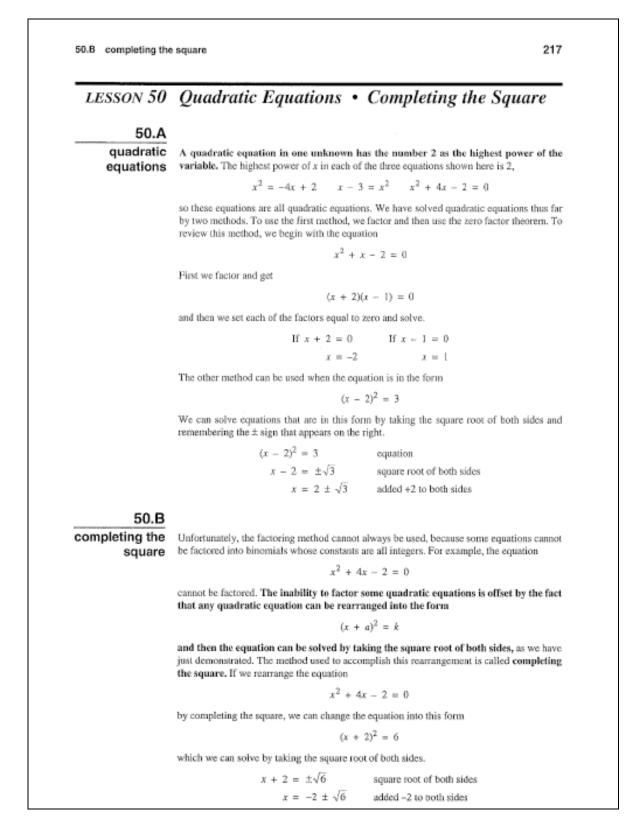

$$\frac{+1}{+2} \cdot \frac{(2)}{(2)} \rightarrow \frac{+2}{+4}$$

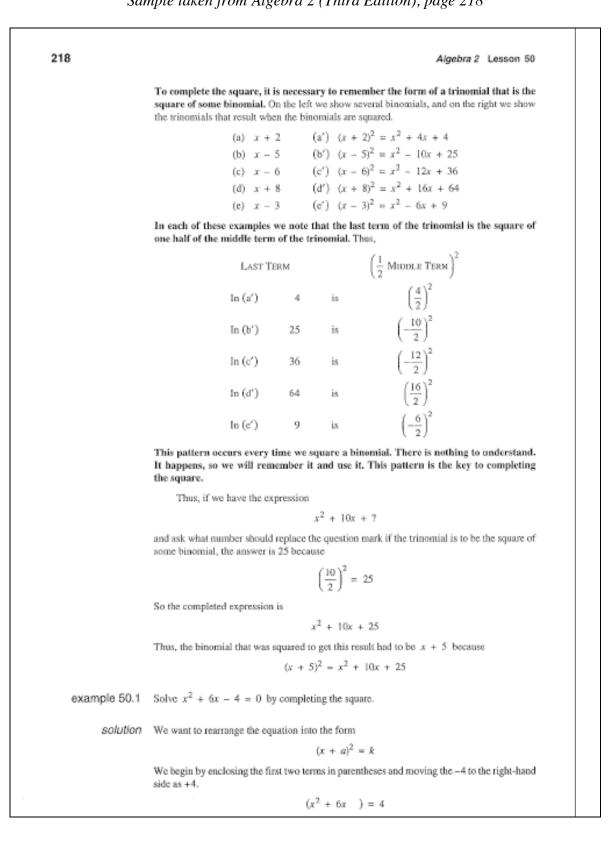
In the figures below, we use the same intercept but move an x distance of +4 and a y distance of +2 to find the new point.

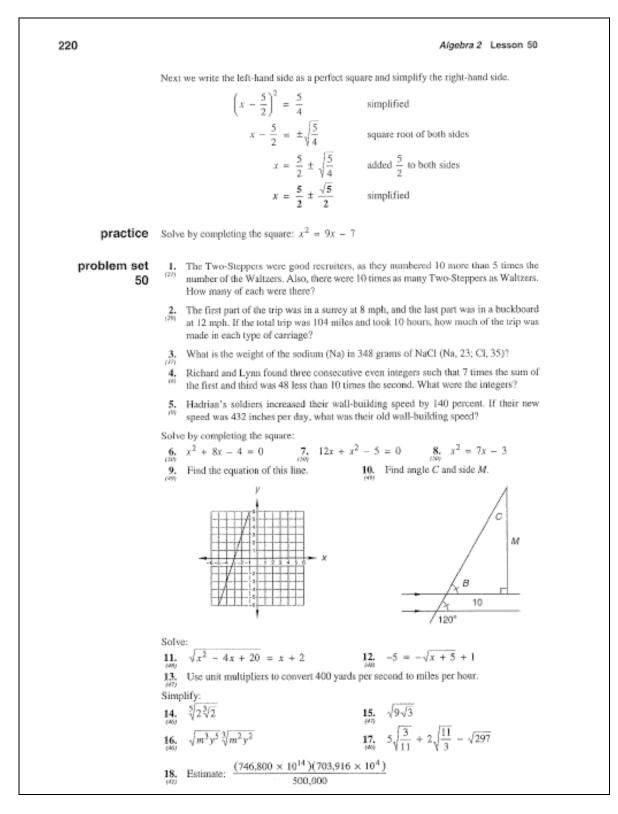


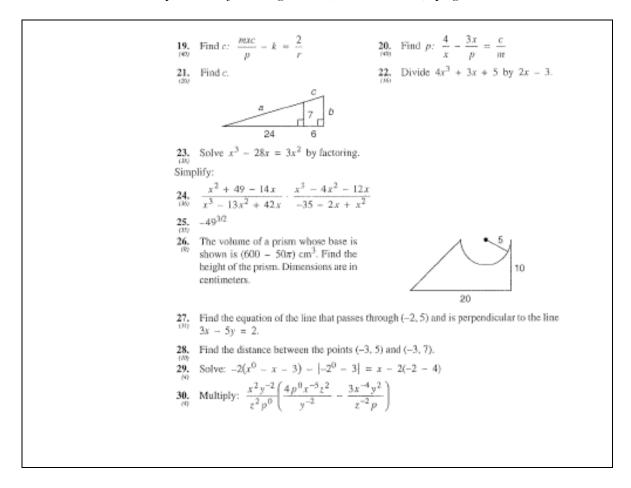
Sample taken from Algebra 1 (Third Edition), page 419

Lesson 99 Uniform Motion—Unequal Distances 419 Rachel began 15 kilometers ahead and they ended up in the same place, so the distance solution diagram is We get the distance equation from the diagram as $15 + D_p \approx D_C$ and we replace D_R with $R_R T_R$ and D_C with $R_C T_C$ to get $15 + R_R T_R = R_C T_C$ Then we reread the problem to get the other three equations. $R_{\rm R} = 70$ $R_{\rm C} = 100$ $T_{\rm R} = T_{\rm C}$ Now we solve. $15 + 70T_p = 100T_c$ substituted 15 + $70T_C = 100T_C$ used fact $T_R = T_C$ $15 = 30T_C$ simplified $\frac{1}{2} = T_C$ divided So Charlene will catch Rachel in 1/2 hour. Harry and Jennet jog around a circular track that is 210 meters long. Jennet's rate is 230 meters example 99.3 per minute, while Harry's rate is only 200 meters per minute. In how many minutes will Jennet be a full lap ahead? solution This problem is simpler if we straighten it out and get the following distance diagram. D_H 210 We get the distance equation from this diagram as $D_H + 210 = D_J$ so $R_H T_H + 210 = R_J T_J$ The time equation is $T_H = T_{J^+}$ and the rate equations are $R_J = 230$, $R_H = 200$. Thus the four equations are $R_H T_H + 210 = R_J T_J$ $T_H = T_J$ $R_J = 230$ $R_H = 200$ We use substitution to solve. $200T_H + 210 = 230T_H$ substituted $210 = 30T_{H}$ simplified divided 7 minutes = T_H Thus $T_J = 7$ minutes because $T_J = T_H$. Therefore, Jennet will be a full lap ahead of Harry in 7 minutes.


Algebra 1, Lesson 99 Sample taken from Algebra 1 (Third Edition), page 420


	20	Lesson 99	
practice	a. At 5 a.m. Napoleon headed south from Waterloo at 4 k Wellington headed south from Waterloo. If Wellingto 20 kilometers ahead of Napoleon at 2 p.m., how fast was	n passed Napoleon and was	
	b. Helen has a 4-kilometer head start on Paris. How long will Helen travels at 6 kilometers per hour and Paris travels at		
problem set 99	 Ferris and Julia jog around a circular track that is 500 250 meters per minute, while Ferris's rate is only 230 me minutes will Julia be a full lap ahead? Begin by drawing a and writing the distance equation. 	ters per minute. In how many	
	Eleanor started out at 60 miles per hour at 9 a.m., two how catch ber. If she was still 60 miles ahead at 3 p.m., how fas drawing a diagram of distances traveled and writing the di	t was Alexi driving? Begin by	
	3. The product of 5 and the sum of a number and -8 is 9 gre ³⁰ the opposite of the number. Find the number.	ater than the product of 2 and	
	I. When the car overturned, the jar broke and spilled 450 nic freeway. If their value was \$62.50, how many coins of eac		
	5. When the nurse gave the shots, she noticed that 34 percent rest were stolid. If 3300 people were stolid, how many sho		
	Bobby and Joan found four consecutive integers such that and third was 6 less than 7 times the first. What were their		
1	Use the Pythagorean theorem to find the unknown lengths in the following right triangles:		
1			
		3 7	
,	Given the points (4, 3) and (7, -2):		
·	(a) Find the slope of the line that passes through these tw	o points.	
(b) Find the distance between these two points.			
1	. Given the points (4, -2) and (-2, 3):		
	(a) Find the slope of the line that passes through these two and the slope of the line that passes through these two and the slope of the line that passes through these two and the slope of the line that passes through these two and the slope of the line that passes through these two and the slope of the line that passes through these two and the slope of the line that passes through these two and the slope of the line that passes through these two and the slope of the line that passes through the slope of the line that passes through the slope of the slope of the slope of the line that passes through the slope of the line that passes through the slope of the slope of the slope of the line that passes through the slope of the slope of the slope of the slope of the slope o	o points.	
	(b) Find the distance between these two points.		
1	Given the following five functions: $f(x) = x^3$ $g(x) = x^2$ $h(x) = x$ $h(x) = x$	$r^2 = n(r) = -r^3$	
	Identify the function whose graph most resembles the shap		
	(a) (b) (c) (d)	(e)	
		\bigcup \bigwedge	
1	. Use the difference of two squares theorem to find all the equations:	e solutions to the following	
	(a) $x^2 = 64$ (b) $x^2 = 32$	(c) $x^2 = 11$	
1 0	Simplify: $\frac{x^2 + 11x + 28}{-x^2 + 5x} + \frac{x^2 + x - 12}{x^3 - 3x^2 - 10x}$		


Algebra 2 Table of Contents


Lesson 50, Quadratic Equations • Completing the Square	22
Lesson 81, Complex Numbers and Real Numbers • Products of Complex	
Conjugates • Division of Complex Numbers	27
Lesson 103, Advanced Polynomial Division.	32

219 50.B completing the square Note that we left a space inside the parentheses. Now we want to change the expression inside the parentheses so that it is a perfect square. To do this, we first divide the coefficient of x by 2 and square the result. $\left(\frac{6}{2}\right)^2 = 9$ Then we add this number to both sides of the equation. $(x^2 + 6x + 9) = 4 + 9$ Now the left-hand side can be written as $(x + 3)^2$ and the right-hand side as 13. $(x + 3)^2 = 13$ We finish the solution by taking the square root of both sides and remembering the ± sign that will appear on the right. square root of both sides added -3 to both sides $x + 3 = \pm \sqrt{13}$ $x = -3 \pm \sqrt{13}$ Solve $2x + x^2 - 5 = 0$ by completing the square. example 50.2 solution We want to change the form of the equation to $(x + a)^2 = k$ We begin by moving the constant term to the right-hand side and enclosing the other two terms in parentheses. We leave a space inside the parentheses. $(x^2 + 2x) = 5$ Now we square $\frac{1}{2}$ of the coefficient of x $\left(\frac{2}{2}\right)^2 = 1$ and add it to both sides. $(x^2 + 2x + 1) = 5 + 1$ The left-hand side is a perfect square, and the right-hand side is 6. $(x + 1)^2 = 6$ simplified $x + 1 = \pm \sqrt{6}$ square root of both sides added --1 to both sides $x = -1 \pm \sqrt{6}$ example 50.3 Solve $x^2 = 5x - 5$ by completing the square. solution We begin by placing the constant term on the right and enclosing the other two terms in parentheses, remembering to leave a space in the parentheses. $(x^2 - 5x) = -5$ Next we divide -- 5 by 2 and square the result. $\left(\frac{-5}{2}\right)^2 = \frac{25}{4}$ Now we add $\frac{25}{4}$ to both sides. $\left(x^2 - 5x + \frac{25}{4}\right) = -5 + \frac{25}{4}$

Sample taken from Algebra 2 (Third Edition), page 335

81.B products of complex conjugates

LESSON 81 Complex Numbers and Real Numbers • Products of Complex Conjugates • Division of Complex Numbers

81.A

complex numbers and real numbers A complex number is a number that has a real part and an imaginary part. When the real part is written first, we say that we have written the complex number in standard form. Thus, the general expression for a complex number in standard form is

335

a + bi

The letter a can be any real number, and the letter b can be any real number. All of these numbers

(a)
$$-\sqrt{2} + 3i$$
 (b) $-\frac{4\sqrt{3}}{5} + 2\sqrt{3}i$ (c) $3 - \frac{23}{\sqrt{2}}i$

are complex numbers in standard form, because all the replacements for a and b are real numbers. If a equals zero, the number does not have a real part. Thus, the following numbers are complex numbers whose real parts equal zero.

(d) +3*i* (e) +
$$2\sqrt{3i}$$
 (f) $-\frac{23}{\sqrt{2}}i$

If the coefficient of the imaginary part of a complex number is zero, we get a complex number that has only a real part, such as the following:

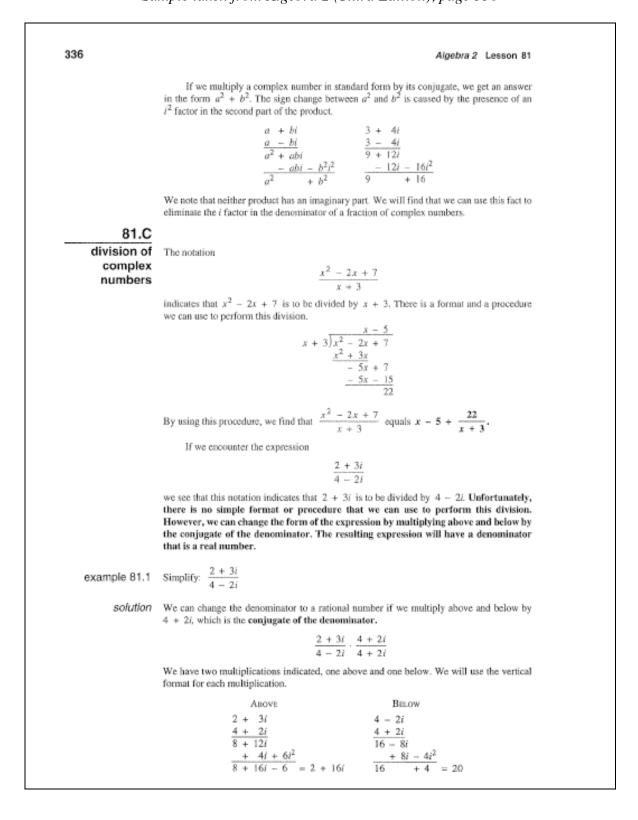
(g)
$$-\sqrt{2}$$
 (b) $-\frac{4\sqrt{3}}{2}$ (i) 3

Thus, we see that every real number is a complex number whose imaginary part is zero, and every imaginary number is a complex number whose real part is zero. Thus, the set of real numbers is a subset of the set of complex numbers, and the set of imaginary numbers is also a subset of the set of complex numbers.

The complex number

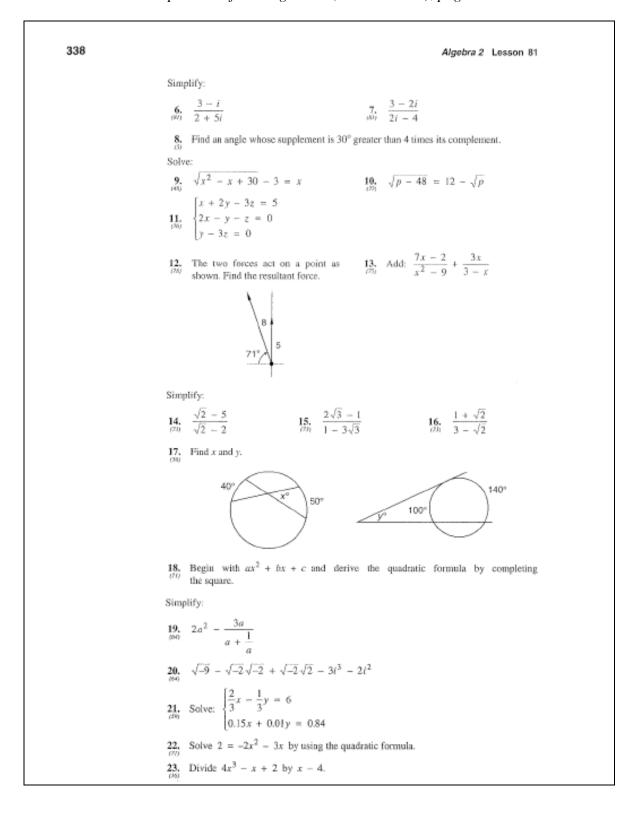
$$\frac{4-3i}{5}$$

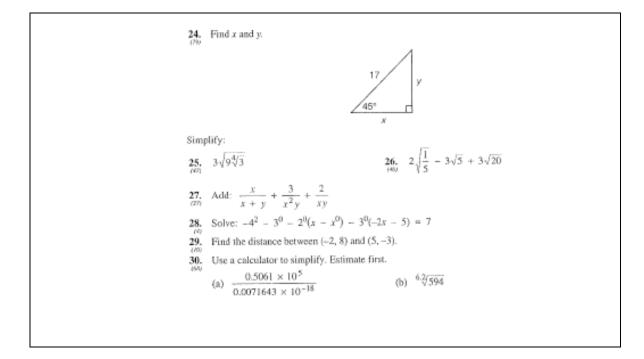
is not in standard form, because it is not in the form a + bi. However, it takes only a slight change to write it in standard form as

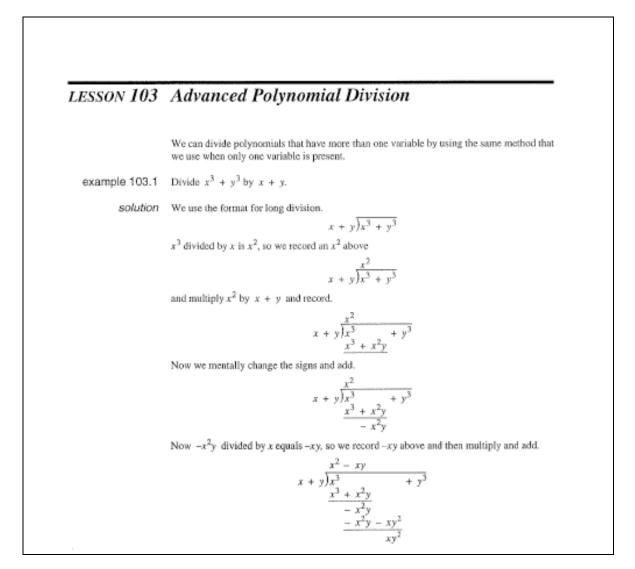

 $\frac{4}{5} - \frac{3}{5}l$

81.B

conjugates


products of We have noted that the product of a two-part number and its conjugate has the complex form $a^2 - b^2$.


$$\begin{array}{ccccc} a & + \ b & & & 3 \ + \ 5\sqrt{2} \\ \frac{a & - \ b}{a^2 + ab} & & & \frac{3 \ - \ 5\sqrt{2}}{9 \ + \ 15\sqrt{2}} \\ \frac{- \ ab \ - \ b^2}{a^2 \ - \ b^2} & & & \frac{- \ 15\sqrt{2} \ - \ 50}{9 \ - \ 50} \end{array}$$



Sample taken from Algebra 2 (Third Edition), page 337

337 problem set 81 Thus, we can write our answer as $\frac{2 + 16i}{20} = \frac{1 + 8i}{10}$ This answer is not in the preferred form of a + bi. We can write this complex number in standard form if we write $\frac{1}{10} + \frac{4}{5}i$ example 81.2 Simplify: $\frac{4-2i}{2i-3}$ solution Although it is not necessary, we will begin by writing the denominator in standard form as 4 - 2i-3 + 21 We can change the denominator to a real number if we multiply above and below by -3 - 2i. $\frac{4-2i}{-3+2i} \cdot \frac{-3-2i}{-3-2i}$ We have two multiplications to perform. Bruow ABOVE 4 - 2i-3 + 2i $\frac{\frac{-3}{-3} - 2i}{9 - 6i}$ $\frac{\frac{-4i}{-9} + 6i}{9 + 4} = 13$ $\frac{-3 - 2i}{-12 + 6i}$ $\frac{-12 + 6i}{-12 - 2i - 4} = -16 - 2i$ Thus, the new form of the expression is -16 - 2i13 which can be written in standard form as follows: $-\frac{16}{13} - \frac{2}{13}i$ practice Simplify: $\frac{2 + 3i}{3 - 3i}$ b. $\frac{2-2i}{2i-2}$ а. problem set 1. Monkeys varied directly as turtles squared. When there were 2 turtles, there were 100 monkeys. How many monkeys were there when there were 5 turtles? Work the 81 problem once using the direct variation method and again using the equal ratio method. 2. The number of macaws varied inversely as the number of apes squared. When there were 4 macaws, there were 10 apes. How many macaws were there when there were only 2 apes? 3. Roger made the 375-mile trip in 10 hours less than it took Judy. This was because he traveled 3 times as fast as Judy traveled. How fast did each travel, and for how long did each travel? Wittloccodee has one solution that is 10% glycol and another that is 40% glycol. How
 work of unit should be also be much of each should she use to get 200 liters of solution that is 19% glycol? The curmudgeon chortled with glee when the results were announced, because only 5. 60% had made it. If 1120 had not made it, how many had tried?

Sample taken from Algebra 2 (Third Edition), page 427

problem set 103 427 Finally, xy^2 divided by x equals y^2 . We record a y^2 above and multiply to finish. $\begin{array}{r} x^2 - xy + y^2 \\ x + y) x^3 &+ y^3 \\ \frac{x^3 + x^2 y}{- x^2 y} \\ - x^2 y - xy^2 \end{array}$ example 103.2 Divide $x^3 - y^3$ by x - y. solution The procedure is the same, and the answer is the same, except that the sign of the middle term $x - y)\frac{x^{2} + xy + y^{2}}{x^{3} - x^{2}y} - y^{3}$ $\frac{x^{3} - x^{2}y}{x^{2}y} - \frac{x^{2}y - xy^{2}}{xy^{2} - y^{2}}$ $\frac{x^{2}y - xy^{2}}{xy^{2} - y}$ is different. practice Use long division to divide: **a.** $8x^3 + 64y^3$ by 2x + 4y**b.** $8x^3 - 64y^3$ by 2x - 4y A 60 percent markup of the purchase price was necessary to pay the rent, utilities, and
 ⁽³⁾
 ⁽³⁾
 ⁽³⁾
 ⁽⁴⁾
 ⁽⁴⁾ problem set the workers and still make a small profit. If an item sold for \$1424, what did the 103 storekeeper pay for it? 2. Sister Baby's boat could attain a speed of 18 miles per hour on a lake. If the boat took the same time to go 132 miles down the river as it took to go 84 miles up the river, how fast was the current in the river? Donna took twice as long to drive 720 miles as Maple took to drive 200 miles. Find the 3. rates and times of both if Donna's speed exceeded that of Maple by 40 miles per hour. 4. The initial pressure and temperature of a quantity of an ideal gas was 400 millimeters of mercury and 300 K. If the volume was held constant, what would the final temperature be in kelvins if the pressure was increased to 600 millimeters of mercury? David and Le Van found three consecutive multiples of 11 such that 4 times the sum 5. of the first and third was 66 less than 10 times the second. What were the numbers? 6. (184) 7. (7) Use long division to divide $27x^3 + 8y^3$ by 3x + 2y. Find x and y. Then find the perimeter of the triangle. $\gamma + 3$ x + 15 8. Find ab(2) where a(x) = x - 5; $D = \{\text{Reals}\}$, and $b(x) = x^2 + 4$; $D = \{\text{Negative}_{(N)} \mid \text{interval}_{(N)}\}$ integers}. Complete the square as an aid in graphing: 9. $y = x^2 + 4x + 6$ 10. $y = -x^2 + 4x - 6$

Sample taken from Algebra 2 (Third Edition), page 428

428 Algebra 2 Lesson 103 11. Graph on a number line: $x + 3 \ge 5$; $D = \{\text{Reals}\}$ 12. Find the number that is $\frac{2}{3}$ of the way from $\frac{1}{4}$ to $2\frac{1}{2}$ **13.** Use substitution to solve: $\begin{cases} 4x + 3y = 17\\ 2x - 3y = -5 \end{cases}$ Solve: **14.** $\begin{cases} x^2 + y^2 = 6 \\ x - y = 2 \end{cases}$ **15.** $\begin{cases} x^2 + y^2 = 10 \\ 2x^2 - 2y^2 = 5 \end{cases}$ **16.** $\begin{cases} x + 2y + z = -1 \\ 3x - y + z = 6 \\ 2x - 3y - z = 8 \end{cases}$ 17. Graph: $\begin{cases} x - 4y \le -4 \\ x < 3 \end{cases}$ 18. Graph on a number line: $-3 \le x - 3 \ge 4$; $D = \{\text{Integers}\}$ Simplify: $19._{(83)} = \frac{(x^{2\alpha-2})^b}{x^{b/2}}$ $\frac{20}{m^2} \frac{m}{m^2 + \frac{m}{m^2 + \frac{1}{m}}} = \frac{21}{m^2} \sqrt[5]{x^2y^3} \sqrt[4]{xy}$ $\begin{array}{ccc} 23, & \frac{2i-5}{5i^2-2i} \\ & 24, & \frac{3+2\sqrt{5}}{5-\sqrt{20}} \end{array}$ $\frac{22}{i^{(2)}} = \frac{2i^2 + i^3}{i^3 + 2}$ 25. The two vectors act on the point as shown. Find the resultant vector, 29° **26.** Find x: $a\left(\frac{b}{c} - \frac{1}{x}\right) = \frac{m}{n}$ 27. Solve: $\sqrt{z} + \sqrt{z + 33} = 11$ Simplify: **28.** $3\sqrt{\frac{4}{3}} - 2\sqrt{\frac{3}{4}} + 5\sqrt{48}$ **29.** $\sqrt{-16} = \sqrt{-2}\sqrt{2}\sqrt{-3}\sqrt{-3} = l^5$ 30. In this diagram, AB = AC, angle $A = 40^{\circ}$, and \overline{BD} is perpendicular to AC at D. How many degrees are there in angle DBC? R

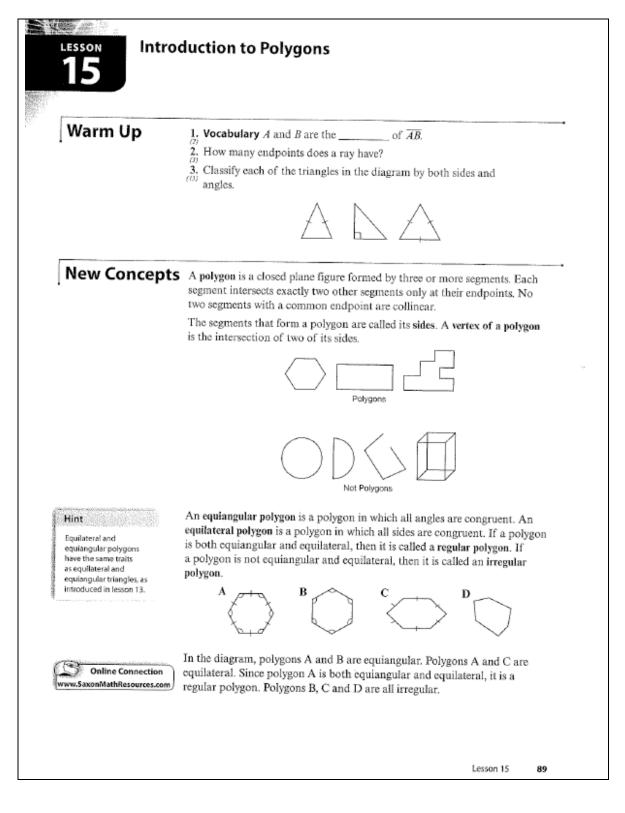
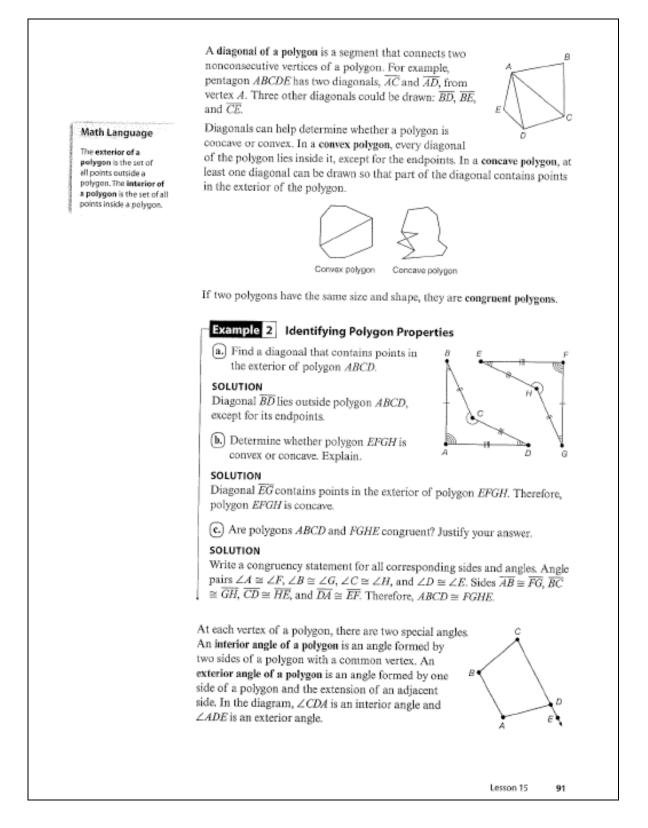
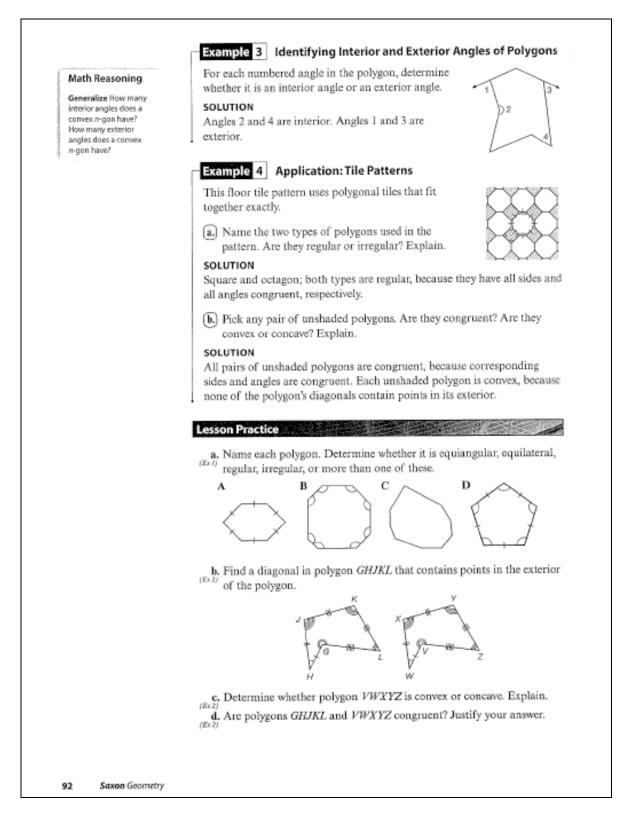
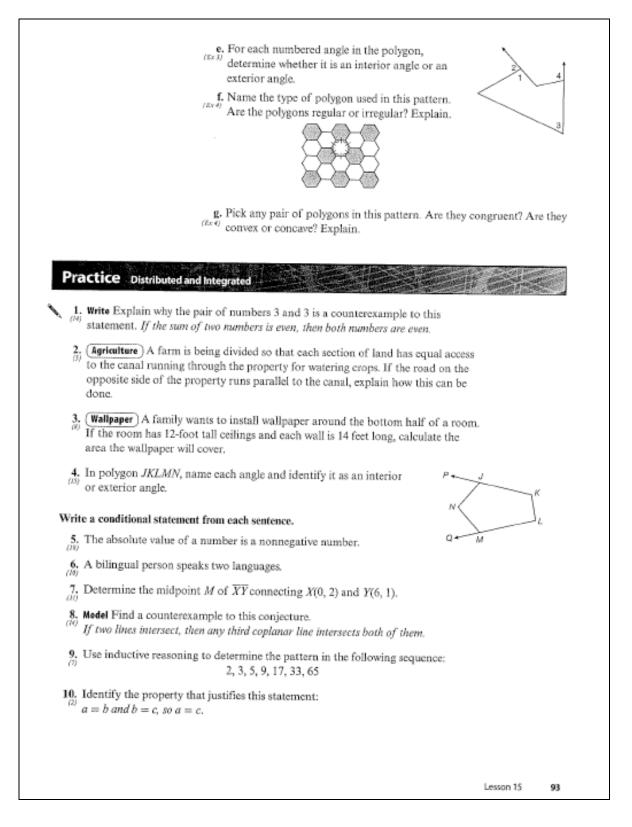

Geometry

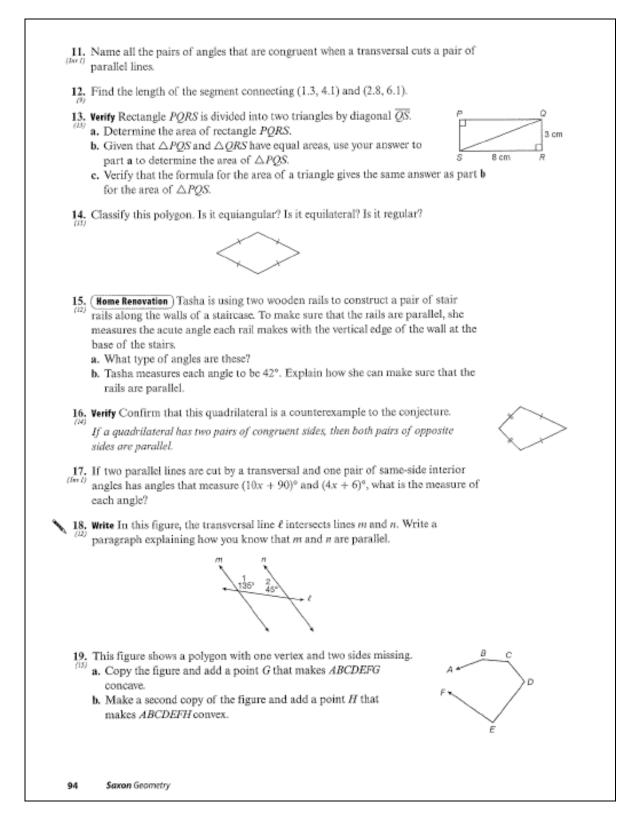
Table of Contents

Lesson 15, Introduction to Polygons	36
Lesson 54, Representing Solids	43
Lab 8, Tangents to a Circle	49
Investigation 8, Patterns	51

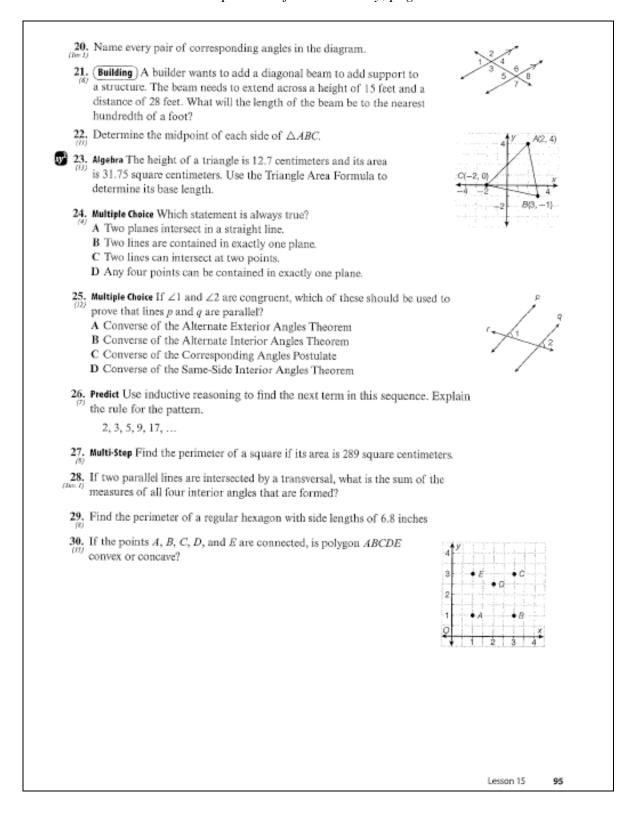

Geometry, Lesson 15

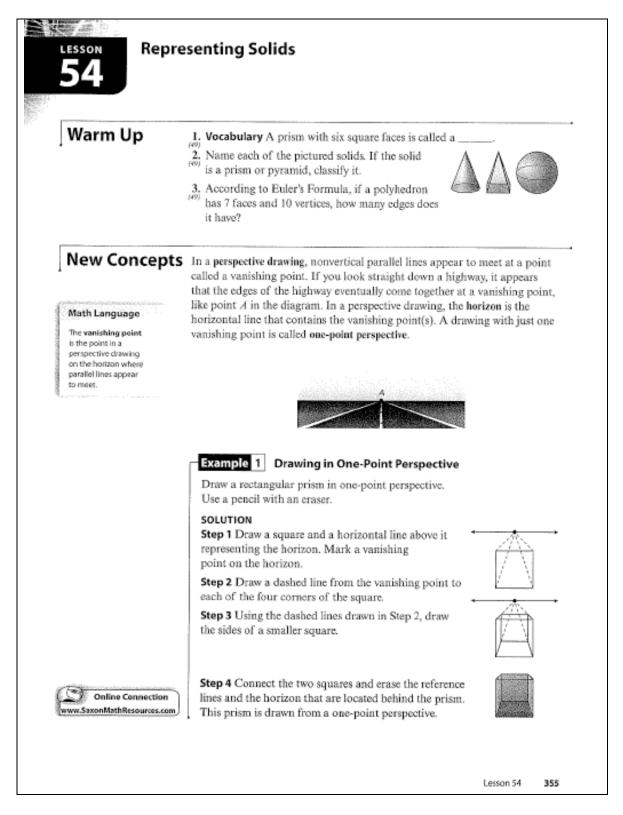

Sample taken from Geometry, page 89

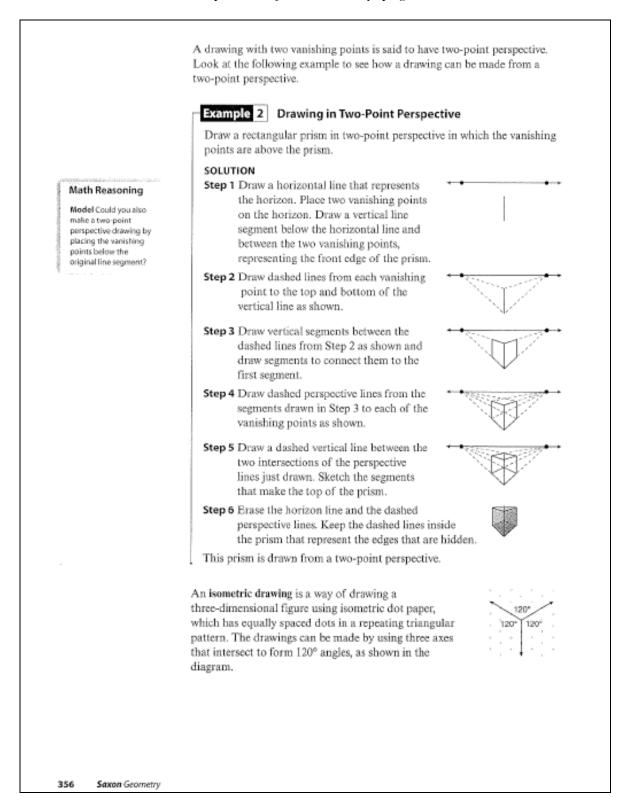



Geometry, Lesson 15 Sample taken from Geometry, page 90

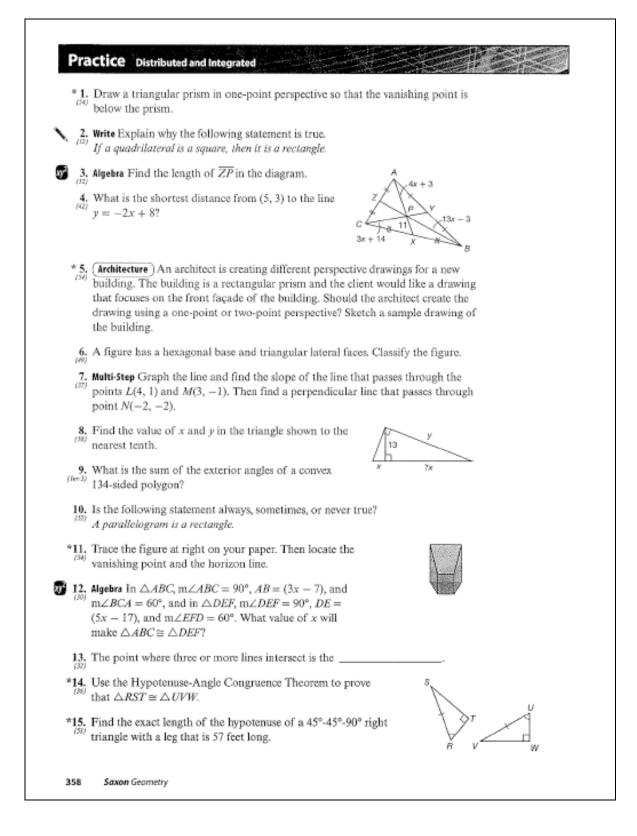
Math Language	Name	Sides	Regular Polygon	Irregular Polygon			
An ø-gon is a polygon with <i>n</i> sides, Problems may refer to <i>n</i> -gons	Triangle	3	\bigtriangleup	\triangleright			
when the number of sides of a polygon is not known, or when a solution is desired for all	Quadrilateral	4					
possible polygons.	Pentagon	5	\bigcirc	\bigcirc			
	Hexagon	6	\bigcirc	\bigcirc			
	Heptagon	7	\bigcirc	\square			
	Octagon	8	\bigcirc	\bigcirc			
	Nonagon	9	\bigcirc	\mathcal{C}			
	Decagon	10	\bigcirc	\bigcirc			
	Hendecagon	11	\bigcirc	\sum			
	Dodecagon	12	\bigcirc	\leq			
	Classify each p	olygon. Det	g Polygons termine whether it is eq than one of these.	uiangular, equilateral,			
	equilateral, so	it is irregula					
		Polygon B has 7 sides, so it is a heptagon. It is equilateral and irregular.					
	Polygon C is a Polygon D is a is regular.		. It is irregular. al. It is equilateral and	equiangular, so it			

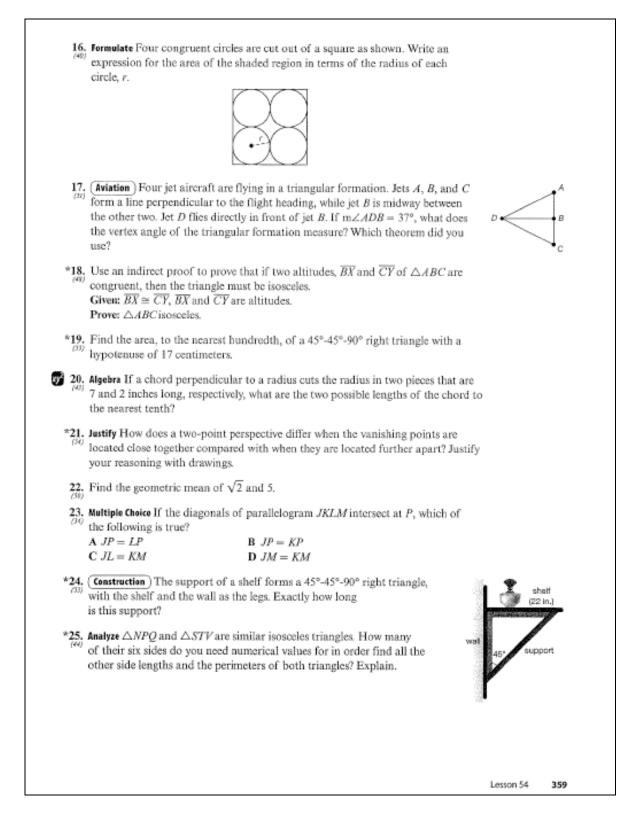


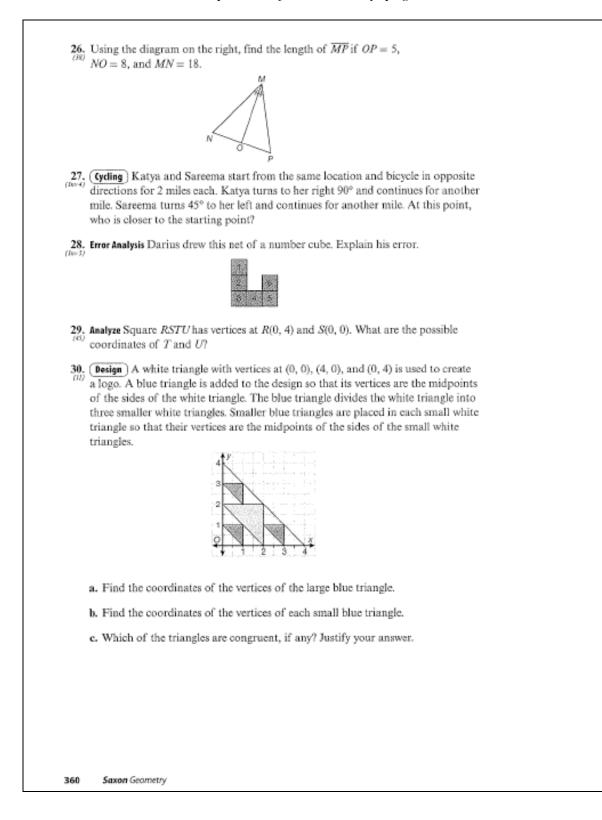


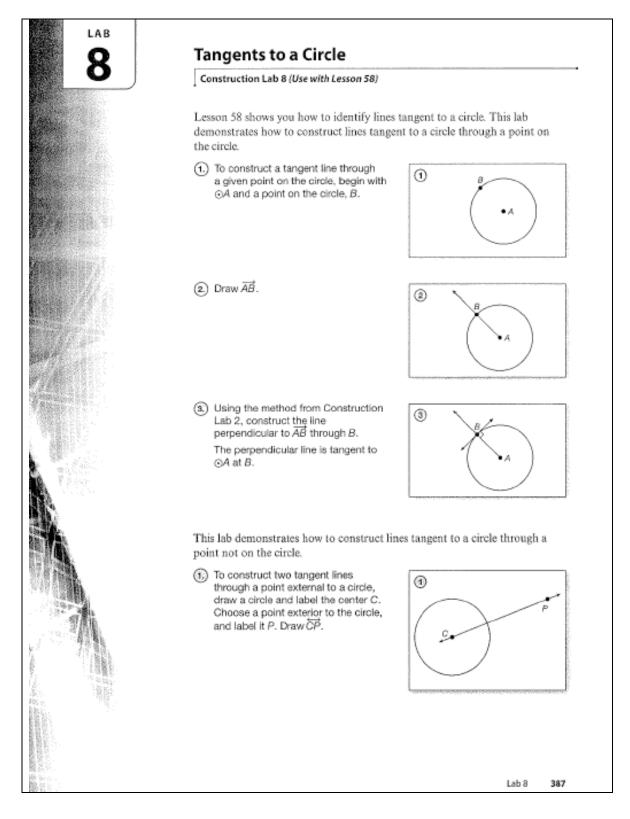


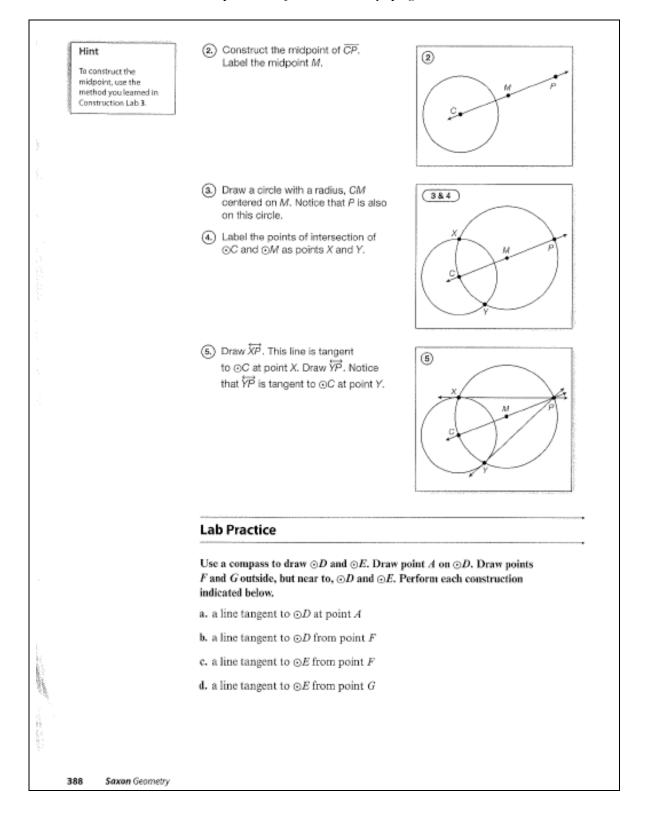


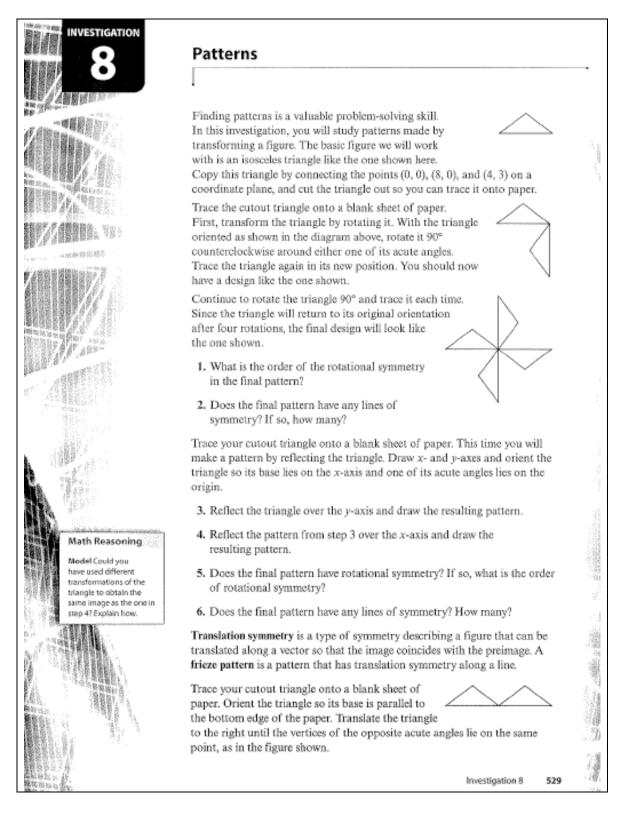

Geometry, Lesson 15 Sample taken from Geometry, page 95

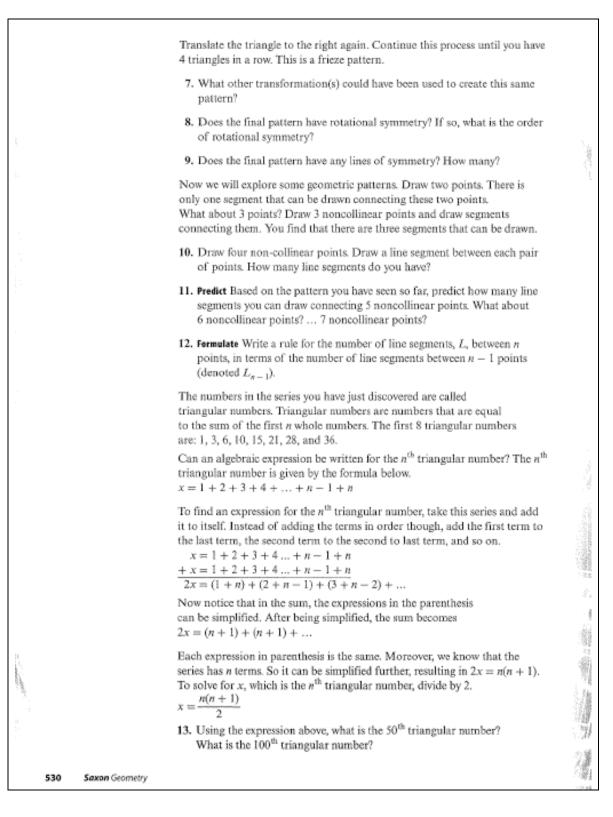






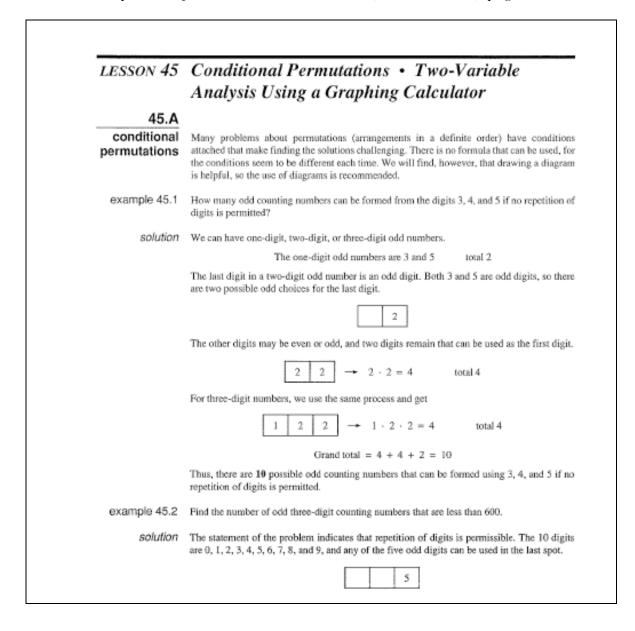



Geometry, Lab 8


Geometry, Lab 8

Geometry, Investigation 8

Geometry, Investigation 8


Geometry, Investigation 8 Sample taken from Geometry, page 531

Investig	gation Practice
	a. Using the right triangle given here, sketch the result of rotating the figure 90° counterclockwise about the point A.
	b. Continue to rotate the triangle 90° until it coincides with itself, sketching the result of each rotation. What is the order of rotational symmetry in th final figure? Does it have any lines of symmetry?
	c. Return to the initial figure and reflect it over the vertical leg of the triangle. Then reflect it over the horizontal leg of the triangle. What kind of polygon is the resulting figure?
	d. Does the resulting figure have any lines of symmetry? Does it have rotational symmetry?
	e. Square numbers are whole numbers that could be the area of a square. The series begins: 1, 4, 9, 16, 25, Write an equation to find the n th square number.
	f. What is the 30th square number?

Advanced Mathematics

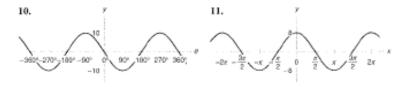
Table of Contents

Lesson 45, Conditional Permutations • Two-Variable Analysis Using a	
Graphing Calculator	55
Lesson 79, De Moivre's Theorem • Roots of Complex Numbers	64
Lesson 95, Advanced Complex Roots	66

5	320 Lesson 45	
n i	The digit 0 cannot be used in the first box because the resulting number would have only two digits. Also 6, 7, 8, or 9 cannot be used in the first box or the number would not be less than 600. Thus, only 1, 2, 3, 4, or 5 can be used in the first box. There are 10 digits possible for the second box, so we have	
	5 10 5 - 5 · 10 · 5 = 250	
	Thus, there are 250 odd three-digit counting numbers less than 600.	
5	example 45.3 Five math books and four English books are on a shelf. How many permutations are possible if the math books must be kept together and the English books must be kept together?	
	solution If the math books come first, we get	
	MATH ENGLISH	
	5 4 3 2 1 4 3 2 1 \rightarrow 5! × 4! = 2880	
	If the English books come first, we get	
	ENGLISH MATH	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	If we add the two numbers, we get 5760 possible permutations.	
i.	example 45.4 How many different four-digit odd counting numbers can be formed if no repetition of digits is permitted?	
,	solution The 10 digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, and five digits are even and five are odd. The number must end with an odd digit, so there are five choices for the last digit.	
	5	
ŕ	A four-digit number cannot begin with 0 because if it did, it would be at most a three-digit number. Thus, there are only eight choices left for the first digit.	
	8 5	
ŀ	Zero can be the second digit, so there are eight choices for this digit and seven choices for the third digit.	
	8 8 7 5 - 8 8 · 7 · 5 = 2240	
)	Thus, there are 2240 different four-digit odd counting numbers that can be formed if no repetition of digits is permitted.	
t	example 45.5 An elf, a gnome, a fairy, a pixie, and a leprechaun were to sit in a line. How many different ways can they sit if the elf and the gnome insist on sitting next to each other?	
	solution Let's begin with the elf and the gnome in the first two seats.	
	E G 3 2 1 \rightarrow 3 × 2 × 1 = 6	
	$G E 3 2 1 \rightarrow 3 \times 2 \times 1 = 6$	

[
	321		45.B two-va	ariable analysis using a graphing calculator
	Now let's put the	m in the second	d two seats.	
		3 E	G 2 1	\rightarrow 3 × 2 × 1 = 6
		3 G	E 2 1	\rightarrow 3 × 2 × 1 = 6
	The other possibi	lities are		
	3 2	E G	1 for 6	3 2 I E G for 6
	3 2	G E	1 for 6	3 2 1 G E for 6
	six ways the othe	r three little pe	ople can sit. Si	sit side by side, and for each of these, there are ince $6 \times 8 = 48$, there are 48 different ways
45.B	the little people c	an sit if the elf	and the gnome	sit next to each other.
two-variable analysis using a		ave graphed th		periment involving silver (Ag) and gold (Au). nd estimated the position of the line indicated
graphing calculator	Au 82	87 97	107 107	
	Ag 9.5	5.5 7.5	1.5 4.6	
				5 4 2 0 100 110 120 Gold in grams
	We will use the e see is negative.	ndpoints of the	e line (75, 10) a	and (120, 1) to determine the slope, which we
		Slope =	$\frac{\text{rise}}{\text{run}} = \frac{10}{75} - \frac{10}{7$	$\frac{-1}{120} = \frac{9}{-45} = -0.2$
	Now we find the	ntercept.		
		Ag = -0.2Au	i + b - c	equation
		10 = -0.2(75)	5) + b u	used (75, 10) for Au and Ag
		b = 25		solved for b
	Now we can write	the equation t	-	r as a function of gold.
	The process of e	stimating the	Ag = -0.2 equation of a	Au + 25 line that best fits the data is called linear
	[†] This appellation is introduced by Sir F	ancis Galton (18	122-1911). Origi	ing to do with regression in the usual sense. It was nally, he used the word <i>reversion</i> , but in an address gression Analysis by Draper and Smith, John Wiley

	Graphing calculator							
	have to do is enter the x d the proper key. The TI-82	lata point	ts in one	e list, en	ter the j	e data p	oints in	r regressions. All you another list, and press
				LinR	99			
			ya,	ax+b				
			a=	207	5			
			b=;	25.64	ł			
			r=-	782	4726	541		
	This tells us that the equ data is	ation of	the line	e that th	e calcul	lator es	timates	as the best fit for the
			Ag =	-0.21A	a + 25	.6		
	The last item on the calcu- points lie exactly on the l is +1. If all of the data po- coefficient r is -1. If the correlation coefficient r i values between -1 and -0 would like to have r value. This negative correlation increased. We would have relationship is not really experimental data.	ine and t sints lie e data are s 0. For : 3.9 or be s betwee tells us e hoped f	the slop exactly so scat a rule o tween 0 en -1 an that the for a cor	e of the on the 1 itered th f thumb 1.9 and id -0.7 e amour relation	line is ine and at they for sci for sci t. For ex- or betweent t of sill coeffic	positive the slo do not entific sperime sen 0.7 ver dec ient bet	e, the co pe is ne determined data, we ents in t and 1. C reased a ween	prelation coefficient r gative, the correlation ine a straight line, the e would like to have r he social sciences, we bur r value was -0.78 . is the amount of gold l and -0.9 . Maybe the
problem set 45	 How many three-dig digits are even? 	git counti	ing nun	ibers ar	e there t	hat are	less tha	n 300 such that all the
	Six math books and arranged if the math		-					
	 In the factory k work would those that ren 							
	 The latitude of Princ Princeton to the equilibrium 							
	 On the 24-mile trip double his speed on in each direction, an 	the way	back to	comple	te the t			pace. Thus, he had to How fast did he travel
	 Four thousand liters alcohol had to be ext 							,
	 The ratio of greens to number of whites ex and whites in all, ho 	ceeded t	the num	ber of g	greens b	y 10. lt		mber of blues and the vere 35 blues, greens,
	gives copper as a	ulator to functior	find th t of le	e equat ad (Cu	ion of t = mPt	he line (p + b).	which Also,	Pb) and copper (Cu). best fits this data and find the correlation te is a good model for
		Pb	160	190	190	194	220	1
		10	100	190	190	15/4	220	


Sample taken from Advanced Mathematics (Second Edition), page 323

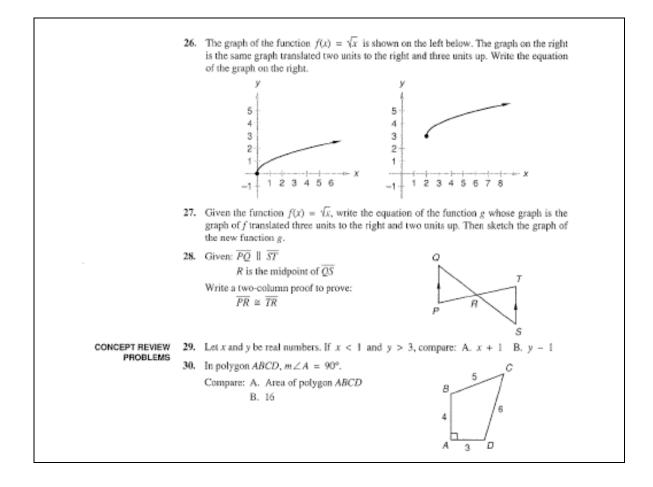
problem set 45

9. The following data came from an experiment that involved dysprosium (Dy) and rhodium (Rh). Use a graphing calculator to find the equation of the line which best fits this data and gives rhodium as a function of dysprosium (Rh = mDy + b). Also, find the correlation coefficient for this scientific data and discuss whether or not the line is a good model for the data.

Dy	110	120	130	140	150	160
Rh	80	92	99	105	113	120

Write the equations of the following sinusoids:

- Find the standard form of the equation of a circle whose center is (-2, 5) and whose radius is 6.
- 13. Sketch the graph of the function $f(x) = \left(\frac{1}{2}\right)^{-n+1}$.


Evaluate:

323

- 14. $\csc \frac{3\pi}{4} = \sec \left(-\frac{5\pi}{6}\right) + \cos \frac{9\pi}{4}$
- 15. $\sec\left(-\frac{19\pi}{6}\right) + \cos\frac{7\pi}{2} \sin\frac{10\pi}{3}$
- 16. By how much does 6P3 exceed 6P2?
- 17. Simplify: $\log_3 9 \log_5 5^3 + \log_7 7^2 \log_{11} 1$

Solve for x:

- **18.** $\log_5 7 + \log_5 8 = \log_5 (2x 4)$ **19.** $\log_3 (x + 1) \log_3 x = \log_3 15$
- **20.** $\frac{3}{4} \log_{10} 10,000 = x$
- 21. Determine if $f(x) = \frac{1}{x}$ and $g(x) = \frac{1}{x}$ are inverse functions by computing their compositions.
- Write the quadratic equation with a lead coefficient of 1 whose roots are 2 + √5 and 2 - √5.
- Find the equation of the line that is equidistant from the points (-4, -3) and (4, 6). Write the equation in slope-intercept form.
- 24. Find f where $g(x) = x^3$ and $(f + g)(x) = 2x^3 + 3$.
- 25. Find the domain of the function $f(x) = \frac{\sqrt{x}}{1 |4x|}$.

Advanced Mathematics, Lesson 79 Sample taken from Advanced Mathematics (Second Edition), page 480

	480 Lesson 7
LESSON 79	De Maiure's Theorem + Posts of Complex
LE330N 79	De Moivre's Theorem • Roots of Complex Numbers
79.A	
De Moivre's theorem	We remember that when we multiply two complex numbers written in polar form, the absolut values are multiplied together and the angles are added. Therefore,
	$(r_1 \operatorname{cis} \theta_1)(r_2 \operatorname{cis} \theta_2) = (r_1 r_2) \operatorname{cis} (\theta_1 + \theta_2)$
	If $z = r \operatorname{cis} \theta$, we apply this rule to get
	$z^2 = (r \operatorname{cis} \theta)(r \operatorname{cis} \theta) = r^2 \operatorname{cis} 2\theta$
	$z^3 = (r \operatorname{cis} \theta)(r \operatorname{cis} \theta)(r \operatorname{cis} \theta) = r^3 \operatorname{cis} 3\theta$
	$z^4 = (r \operatorname{cis} \theta)(r \operatorname{cis} \theta)(r \operatorname{cis} \theta)(r \operatorname{cis} \theta) = r^4 \operatorname{cis} 4\theta$
	If we repeatedly multiply z by itself, we find that
	$z^n = (r \operatorname{cis} \theta)^n = r^n \operatorname{cis} n\theta$
	where n is a positive integer. This fact, considered to be one of the most important in the stud of complex numbers, is known as De Moivre's theorem . This theorem is named after Abraham De Moivre (1667–1754), a French refugee who lived in London.
example 79.1	Find (2 cis 30°) ⁵ .
solution	By De Moivre's theorem,
	$(2 \operatorname{cis} 30^\circ)^5 = 2^5 \operatorname{cis} (5 \cdot 30^\circ) = 32 \operatorname{cis} 150^\circ$
example 79.2	Use De Moivre's theorem to find (1 + 1)13. Express the answer in rectangular form.
solution	To use De Moivre's theorem, we first need to put our complex number into polar form. We compute r and θ .
	$r = \sqrt{1^2 + 1^2} = \sqrt{2}$
	Tan $\theta = \frac{1}{1} = 1$ and the number lies in the first quadrant, so
	$\theta = 45^{\circ}$
	Thus, $1 + i = \sqrt{2}$ cis 45°. Applying De Moivre's theorem and remembering that cis of an angle equals cis of an integer multiple of 360° added to that angle, we get
	$(1 + i)^{13} = (\sqrt{2} \operatorname{cis} 45^{\circ})^{13}$
	$= (\sqrt{2})^{13} \operatorname{cis} (13 \cdot 45^{\circ})$
	= 2 ^{(3/2} cis (13 · 45°)
	≈ 2 ⁶ 2 ^{1/2} cis 585°
	$= 64\sqrt{2} \operatorname{cis} (360^{\circ} + 225^{\circ})$
	= 64\{2 cis 225°
	Converting back to rectangular form gives us the final answer.
	$64\sqrt{2} \operatorname{cis} 225^{\circ} = 64\sqrt{2} \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i \right)$
	=64 - 64i

Advanced Mathematics, Lesson 79 Sample taken from Advanced Mathematics (Second Edition), page 481

	481 79.B roots of complex numbers
79.B	
roots of	If we use 2 as a factor three times, the product is 8.
complex	$2 \cdot 2 \cdot 2 = 8$
numbers	This is the reason we say that a third root of 8 is 2. Also, we can write
	$\sqrt[3]{8} = 2$
	Because the notation $8^{1/3}$ means the same thing as $\sqrt[3]{8}$, this expression also has a value of 2.
	$8^{1/3} = 2$
	There are really three different cube roots of 8, two of which are complex. In fact, every non- zero number has <i>n</i> distinct roots. In this section, we will learn how to determine all <i>n</i> roots of a number. Above, when we used the cube root notation, $\sqrt[3]{}$, and wrote $8^{1/3}$, we understood the answer to be 2 instead of either of the complex third roots. This is because, by convention, we assume that the <i>n</i> th root notation when applied to a real number refers to the real <i>n</i> th root. Should there be a positive and negative choice of real roots, the <i>n</i> th root notation refers to the positive real root. For example, the number 4 has two square roots, but when we write $\sqrt{4}$, we mean the positive square root, 2.
	Now we will illustrate how to find all the roots of a complex number expressed in polar form. Suppose we use the complex number 2 cis 12° as a factor three times. The product is 8 cis 36°
	(a) (2 cis 12°)(2 cis 12°)(2 cis 12°) = 8 cis 36°
	because we multiply complex numbers in polar form by multiplying the numerical coefficients and adding the angles. Thus, a third root of 8 cis 36° is 2 cis 12°.
	There are two other third roots of 8 cis 36°.
	(b) (2 cis 132°)(2 cis 132°)(2 cis 132°) = 8 cis 396° = 8 cis (360° + 36°)
	= 8 cis 36°
	(c) (2 cis 252°)(2 cis 252°)(2 cis 252°) = 8 cis 756° = 8 cis (720° + 36°)
	= 8 cis 36° In (b) the angle of the product is 396°, which is once around (360°) and 36° more. In (c) the angle of the product is 756°, which is twice around (720°) and 36° more. Thus, the three third roots of 8 cis 36° are
	2 cis 12° 2 cis 132° 2 cis 252°
	To get the first root, we took the third root of 8 and divided the angle by 3. The angle of the next root is 360°/3, or 120°, greater, and the angle of the next root is 2(360°/3), or 240°, greater.
	A third root of 8 cis $36^{\circ} = 8^{1/3}$ cis $\frac{36^{\circ}}{3} = 2$ cis 12°
	A second third root of 8 cis $36^{\circ} = 8^{1/3} \operatorname{cis} \left(\frac{36^{\circ}}{3} + 120^{\circ}\right) = 2 \operatorname{cis} 132^{\circ}$
	A third third root of 8 cis $36^\circ = 8^{1/3} \operatorname{cis} \left(\frac{36^\circ}{3} + 240^\circ\right) = 2 \operatorname{cis} 252^\circ$
	If we continue the process, the roots will begin to repeat. The next step would be to add $3 \times 120^\circ$, or 360°. If we do this, the result is 2 cis 12° again.
	$8^{1/3} \operatorname{cis} \left(\frac{36^\circ}{3} + 360^\circ \right) = 2 \operatorname{cis} 372^\circ = 2 \operatorname{cis} 12^\circ$
	Every complex number except zero has two square roots, three cube roots, four fourth roots, five fifth roots, and, in general, n n th roots. The angles of the third roots differ by 360°/3, or 120°. The angles of the fourth roots differ by 360°/4, or 90°. The angles of the fifth roots differ by 360°/5, or 72°; etc. The angles of the n th roots differ by 360°/ n .

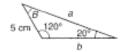
example 79.3 Find the four fourth roots of 16 cis 60°. Check the answers by multiplying. solution The first root is $16^{1/4}$ cis $(60^{\circ}/4) = 2$ cls 15°. Angles in the polar form of the fourth roots differ by $360^{\circ}/4$, or 90° , so the other three roots are $2 \text{ cis } 105^{\circ}$, $2 \text{ cis } 285^{\circ}$ Now we check: $(2 \text{ cis } 15^{\circ})(2 \text{ cis } 15^{\circ})(2 \text{ cis } 15^{\circ}) = 16 \text{ cis } 60^{\circ}$ $(2 \text{ cis } 105^{\circ})(2 \text{ cis } 105^{\circ})(2 \text{ cis } 105^{\circ})(2 \text{ cis } 105^{\circ}) = 16 \text{ cis } 60^{\circ}$ $(2 \text{ cis } 105^{\circ})(2 \text{ cis } 105^{\circ})(2 \text{ cis } 105^{\circ})(2 \text{ cis } 105^{\circ}) = 16 \text{ cis } 60^{\circ}$ $(2 \text{ cis } 195^{\circ})(2 \text{ cis } 195^{\circ})(2 \text{ cis } 195^{\circ}) = 16 \text{ cis } 780^{\circ}$ $= 16 \text{ cis } (60^{\circ} + 720^{\circ}) = 16 \text{ cis } 60^{\circ}$ $(2 \text{ cis } 285^{\circ})(2 \text{ cis } 285^{\circ})(2 \text{ cis } 285^{\circ}) = 16 \text{ cis } 1140^{\circ}$	
differ by 360°/4, or 90°, so the other three roots are 2 cis 105°, 2 cis 195°, 2 cis 285° Now we check: (2 cis 15°)(2 cis 15°)(2 cis 15°)(2 cis 15°) = 16 cis 60° (2 cis 105°)(2 cis 105°)(2 cis 105°)(2 cis 105°) = 16 cis 420° = 16 cis (60° + 360°) = 16 cis 60° (2 cis 195°)(2 cis 195°)(2 cis 195°)(2 cis 195°) = 16 cis 780° = 16 cis (60° + 720°) = 16 cis 60° (2 cis 285°)(2 cis 285°)(2 cis 285°) = 16 cis 1140°	
Now we check: (2 cis 15°)(2 cis 15°)(2 cis 15°)(2 cis 15°) = 16 cis 60° (2 cis 105°)(2 cis 105°)(2 cis 105°)(2 cis 105°) = 16 cis 420° = 16 cis (60° + 360°) = 16 cis 60° (2 cis 195°)(2 cis 195°)(2 cis 195°)(2 cis 195°) = 16 cis 780° = 16 cis (60° + 720°) = 16 cis 60° (2 cis 285°)(2 cis 285°)(2 cis 285°) = 16 cis 1140°	
$\begin{aligned} (2 \operatorname{cis} 15^\circ)(2 \operatorname{cis} 15^\circ)(2 \operatorname{cis} 15^\circ)(2 \operatorname{cis} 15^\circ) &= 16 \operatorname{cis} 60^\circ \\ (2 \operatorname{cis} 105^\circ)(2 \operatorname{cis} 105^\circ)(2 \operatorname{cis} 105^\circ)(2 \operatorname{cis} 105^\circ) &= 16 \operatorname{cis} 420^\circ \\ &= 16 \operatorname{cis} (60^\circ + 360^\circ) = 16 \operatorname{cis} 60^\circ \\ (2 \operatorname{cis} 195^\circ)(2 \operatorname{cis} 195^\circ)(2 \operatorname{cis} 195^\circ) = 16 \operatorname{cis} 780^\circ \\ &= 16 \operatorname{cis} (60^\circ + 720^\circ) = 16 \operatorname{cis} 60^\circ \\ (2 \operatorname{cis} 285^\circ)(2 \operatorname{cis} 285^\circ)(2 \operatorname{cis} 285^\circ) = 16 \operatorname{cis} 1140^\circ \end{aligned}$	
$\begin{array}{l} (2\ {\rm cis}\ 105^\circ)(2\ {\rm cis}\ 105^\circ)(2\ {\rm cis}\ 105^\circ)(2\ {\rm cis}\ 105^\circ) = \ 16\ {\rm cis}\ 420^\circ\\ &=\ 16\ {\rm cis}\ (60^\circ\ +\ 360^\circ) = \ 16\ {\rm cis}\ 60^\circ\\ (2\ {\rm cis}\ 195^\circ)(2\ {\rm cis}\ 195^\circ)(2\ {\rm cis}\ 195^\circ) = \ 16\ {\rm cis}\ 780^\circ\\ &=\ 16\ {\rm cis}\ (60^\circ\ +\ 720^\circ) = \ 16\ {\rm cis}\ 60^\circ\\ (2\ {\rm cis}\ 285^\circ)(2\ {\rm cis}\ 285^\circ)(2\ {\rm cis}\ 285^\circ) = \ 16\ {\rm cis}\ 1140^\circ\\ \end{array}$	
$= 16 \operatorname{cis} (60^\circ + 360^\circ) = 16 \operatorname{cis} 60^\circ$ $(2 \operatorname{cis} 195^\circ)(2 \operatorname{cis} 195^\circ)(2 \operatorname{cis} 195^\circ)(2 \operatorname{cis} 195^\circ) = 16 \operatorname{cis} 780^\circ$ $= 16 \operatorname{cis} (60^\circ + 720^\circ) = 16 \operatorname{cis} 60^\circ$ $(2 \operatorname{cis} 285^\circ)(2 \operatorname{cis} 285^\circ)(2 \operatorname{cis} 285^\circ) = 16 \operatorname{cis} 1140^\circ$	
$(2 \operatorname{cis} 195^\circ)(2 \operatorname{cis} 195^\circ)(2 \operatorname{cis} 195^\circ)(2 \operatorname{cis} 195^\circ) = 16 \operatorname{cis} 780^\circ$ = 16 cis (60° + 720°) = 16 cis 60° $(2 \operatorname{cis} 285^\circ)(2 \operatorname{cis} 285^\circ)(2 \operatorname{cis} 285^\circ) = 16 \operatorname{cis} 1140^\circ$	
$= 16 \operatorname{cis} (60^\circ + 720^\circ) = 16 \operatorname{cis} 60^\circ$ (2 cis 285°)(2 cis 285°)(2 cis 285°)(2 cis 285°) $= 16 \operatorname{cis} 1140^\circ$	
(2 cis 285°)(2 cis 285°)(2 cis 285°)(2 cis 285°) = 16 cis 1140°	
$= 16 \operatorname{cis} (60^\circ + 1080^\circ) = 16 \operatorname{cis} 60^\circ$	
example 79.4 Find five fifth roots of i.	
solution We write a complex number in polar form with a positive coefficient to find the roots.	
v	
$\tau = 1 \operatorname{cis} 90^{\circ}$	
and the second sec	
The real fifth root of 1 is 1, so we get	
A fifth root of $i = 1^{1/5} \operatorname{cis} \frac{90^{\circ}}{5} = 1 \operatorname{cis} 18^{\circ}$	
Successive angles of the polar form of the fifth roots differ by 360°/5, or 72°, so the other roots are	
1 cis 90°, 1 cis 162°, 1 cis 234°, 1 cis 306°	
Now we check the angles.	
$5 \times 18^{\circ} = 90^{\circ}$ check	
$5 \times 90^{\circ} = 450^{\circ} = 90^{\circ} + 360^{\circ}$ check	
$5 \times 162^{\circ} = 810^{\circ} = 90^{\circ} + 720^{\circ}$ cbeck	
$5 \times 234^{\circ} = 1170^{\circ} = 90^{\circ} + 1080^{\circ}$ check	
$5 \times 306^{\circ} = 1530^{\circ} = 90^{\circ} + 1440^{\circ}$ check	
example 79.5 Find two square roots of 1.	
Solution The polar form of $1 + 0i$ is $1 \operatorname{cis} 0^\circ$.	
$\frac{y}{1+0i} = 1 \operatorname{cis} 0^{\circ}$	

Advanced Mathematics, Lesson 79 Sample taken from Advanced Mathematics (Second Edition), page 483

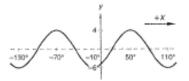
	483	problem set 79
	The positive real square root (known as the principal square root) of $\mathfrak t$ is	s 1, so we get
	A square root of $1 = 1^{1/2} \operatorname{cis} \frac{0^\circ}{2} = 1 \operatorname{cis} 0^\circ$	
	The angles of square roots of complex numbers differ by 360°/2, or 180°, root of 1 cis 0° is 1 cis 180°. Now we check our answers.	so the other square
	$(1 \operatorname{cis} 0^{\circ})(1 \operatorname{cis} 0^{\circ}) = 1 \operatorname{cis} 0^{\circ}$	check
	$(1 \operatorname{cis} 180^\circ)(1 \operatorname{cis} 180^\circ) = 1 \operatorname{cis} 360^\circ = 1 \operatorname{cis} (0^\circ + 360^\circ) = 1 \operatorname{cis} (0^\circ + 3$)° check
	Of course, if we wish, we could write the answers in rectangular form as	1 and -1.
example 79.6	Find three third roots of -1,	
solution	We always begin by writing the complex number in polar fore coefficient.	n with a positive
	$-t + 0i = 1 \operatorname{cis} 180$	ρ
	The first angle is 180°/3, or 60°. The angles of the third roots differ by 120 are as shown.	°, so the three roots
	The three third roots of -1 = 1 cis 60°, 1 cis 180°, 1 cis 3	00°
	These roots can also be written in rectangular form as	
	$\frac{1}{2} + \frac{\sqrt{3}}{2}i, -1 + 0i, \frac{1}{2} - \frac{\sqrt{3}}{2}i$	
example 79.7	Find the four fourth roots of 42 cis 40°.	
solution	We use the root key on the calculator to find that 42 ^{1/4} is about 2.55. The a roots differ by 360°/4, or 90°, so the four fourth roots are as shown.	ingles of the fourth
	2.55 cis 10°, 2.55 cis 100°, 2.55 cis 190°, 2.55 cis 280	,
problem set 79	I. There were 12 people present. How many committees of 9 could be 12 people?	selected from the
	 How many distinguishable ways can 8 flags be lined up along a wa are identical? 	tl if 2 of the flags
	3. The cost of finishing the contract varied linearly with the number of m 10 men worked, the cost was \$5100. If only 5 men worked, the cost would be the cost if only 2 men worked?	ten who worked. If was \$2600, What
	4. The still-water speed of the boat was 3 times the speed of the current boat could go 16 miles downstream in 2 hours less than it took to go 3 how fast was the boat in still water and what was the speed of the current speed of the current was the speed of the current speed	32 miles upstream,
-	5. A crew of 81 workers can do 1 job in 24 days. In order to finish on ti increased the size of the work force by one third. How many days will t the additional workers?	me, the contractor be saved by adding
	6. Find (3 cis 35°) ³ and write the answer in polar form.	
	 Use De Moivre's theorem to find (1 - √3i)⁵. Write the answer in Give an exact answer. 	rectangular form.

Sample taken from Advanced Mathematics (Second Edition), page 484

Lesson 79


- 8. Find the three cube roots of 8i and express them in polar form.
- Find the two square roots of -1 and express them in rectangular form. Give an exact answer.
- 10. Given the hyperbola $\frac{s^2}{20} = \frac{s^2}{2} = 1$, find the vertices and the equations of the asymptotes. Graph the hyperbola.
- Given the hyperbola 9x² 4y² = 36, write the equation in standard form and find the coordinates of the vertices and the equations of the asymptotes. Graph the hyperbola.

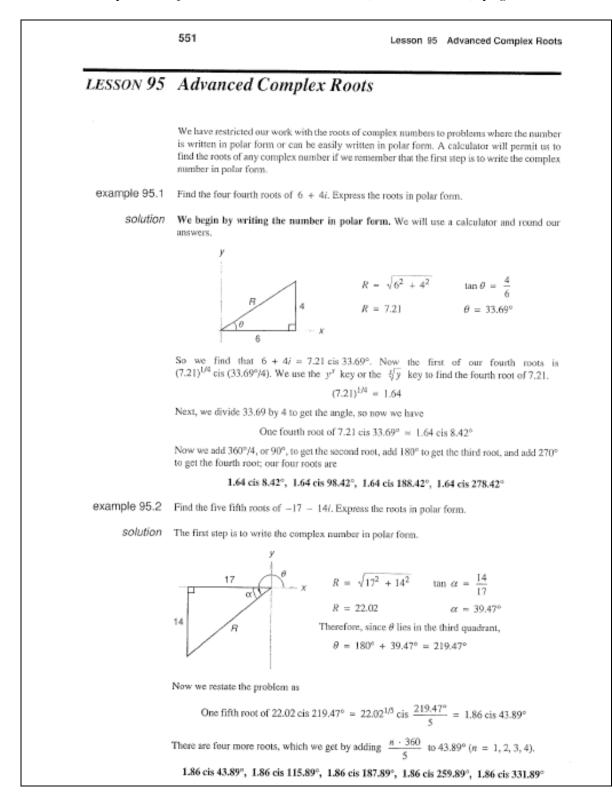
Write all seven terms of (x + y)⁶.
 Write the sixth term of (a + b)⁹.


Show:

484

- 14. $\frac{\tan \theta}{\sec \theta} = \sin \theta$ 15. $\sin (90^\circ \theta) \sec (90^\circ \theta) = \cot \theta$
- 16. Use Cramer's rule to solve: $\begin{cases} 5x 3y = 8\\ 4x + 2y = 5 \end{cases}$
- 17. What is the radius of the circle that can be circumscribed about a 7-sided regular polygon (regular heptagon) whose perimeter is 49 feet?
- 18. The perimeter of a 12-sided regular polygon is 96 feet. What is the length of one of the sides of the polygon? What is the area of the polygon?
- Solve this triangle for the unknown parts.

- 20. Write the equation in standard form and graph the ellipse: $16x^2 + 4y^2 = 64$
- 21. The birth weights of babies at a particular hospital are found to be approximately normally distributed with a mean of 6.8 pounds and a standard deviation of 0.2 pound. What is the approximate percentage of babies born at this hospital who weigh more than 6.9 pounds?
- 22. Solve for x: $\begin{vmatrix} x + 2 & 2x \\ x 1 & x 3 \end{vmatrix} + 8 = 0$
- 23. A parabola has its vertex at (-4, 2) and its focus at (-4, 6). Write the equations of the parabola, the directrix, and the axis of symmetry. Graph the parabola.
- Write the equation of the sinusoid as a cosine function.



 Multiply [4 cis (-300°)](2 cis 30°) and express the answer in rectangular form. Give an exact answer.

Solve the following equations given that $0^{\circ} \le \theta < 360^{\circ}$:

26. $2\sqrt{2}\sin^2\theta - 12\sin\theta + 5\sqrt{2} = 0$ 27. $2\cos 4\theta + 1 = 0$

- Find the distance from the point (1, 3) to the line x 3y + 5 = 0.
- 29. Solve for x: ln (x + 2) ln (3x 4) = ln 3
- Use the midpoint formula method to find the equation of the perpendicular bisector of the line segment with endpoints (-6, -2) and (4, -8). Write the equation in slopeintercept form.

Advanced Mathematics, Lesson 95 Sample taken from Advanced Mathematics (Second Edition), page 552

	552	Lesson 95
problem set 95	1.	There were 90 people in the room. Half were girls and one third were redheads. Two thirds of the people either were redheads or were girls. If one person is chosen at random, what is the probability of choosing a redheaded girl?
	2.	An urn contains 4 green marbles, 3 white marbles, and 3 blue marbles. A marble is drawn at random and then replaced. Then 2 more marbles are randomly drawn without replacement, What is the probability that all 3 are white?
	3.	There were 600 at first, but they increased exponentially. After 60 minutes there were 1000. How many minutes had elapsed before there were 5000?
	4.	In another room there were also 600, but they decreased exponentially. After 60 minutes, they had decreased in number to only 580. What was the half-life of these creatures?
	5.	Rondo could carry the 140 liters on his back. If the solution was 20% alcohol, how much pure alcohol must he add to get a solution that is 44% alcohol?
	6.	Find the four fourth roots of 3 + 4/ and express the roots in polar form.
	7.	Find the three third roots of $2 + 3i$ and express the roots in polar form.
	Sket	ch the graphs of the following:
	8.	$y = 3 + 11 \cos \frac{3}{2}(x - 100^{\circ})$ 9. (a) $y = \sec x$ (b) $y = \csc x$
	10.	Write the equations of these trigonometric functions:
		(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
	Sho	
	11.	$\frac{\sin x}{1 + \cos x} + \frac{1 + \cos x}{\sin x} = 2 \csc x \qquad 12, (1 + \tan x)^2 = \sec^2 x + 2 \tan x$
	13.	$\frac{\sin^4 x - \cos^4 x}{2\sin^2 x - 1} = 1$
	14.	Develop the identity for $\cos \frac{1}{2}x$ by using the identity for $\cos (A + B)$.
	15.	Find cos 285° by using the sum identity for the cosine function and the fact that $285^{\circ} = 240^{\circ} + 45^{\circ}$. Use exact values.
	16.	Use a sum identity to find an expression for sin $\left(x + \frac{\pi}{4}\right)$. Use exact values.
		e the following equations given that $0^\circ \le x < 360^\circ$:
	17.	$3\tan^2 x + 5\sec x + 1 = 0$ 18. $-1 + \tan 4x = 0$
	19,	Find the angle with the smallest mea- sure in the triangle shown.
		8
	20.	Compute $_7P_2$ and $_7C_2$.
	21.	Find the two geometric means between 3 and -24.
	22.	Find the first five terms of the arithmetic sequence whose fourth term is 4 and whose thirteenth term is 28.
	23.	A horizontal ellipse has a major axis of length 10 and a minor axis of length 4. If its center is at the origin, write the equation of the ellipse in standard form. Graph the ellipse.

Sample taken from Advanced Mathematics (Second Edition), page 553


96.A more double-angle identities
97. 1/3 log₂ 27 - log₂ (2x - 1) = 2
88. x = log_{1/3} 18 - log_{1/3} 6
99. Simplify: 5<sup>log₃ 7 - log₃ 5²
10. Let f(x) = ³√x and g(x) = x - 1. Find (g ∘ f)(x).
</sup>

Calculus Table of Contents

Lesson 24, New Denotation for the Definition of the Derivative • The	
Derivative of x^n	70
Lesson 81, Solids of Revolution II: Washers	74
Lesson 116, Series	80

Calculus, Lesson 24

Sample taken from Calculus (Second Edition), page 138

Sample taken from Calculus (Second Edition), page 139

24.B the derivative of xⁿ

139

The value of the rise Δy is the difference of these two expressions. The run is Δx ; so we can write the rise over the run as

$$\frac{\text{Rise}}{\text{Run}} = \frac{\Delta y}{\Delta x} = \frac{f(x+h) - f(x)}{h}$$

The derivative is the limit of this expression as h approaches zero. We remember that the trick is to rearrange the expression algebraically so that h is not a factor of the denominator when happroaches zero. If the function whose derivative we seek is x^3 , we would proceed as follows.

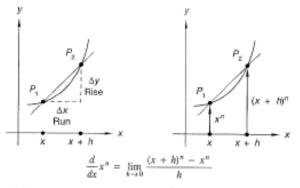
$$\frac{d}{dx}x^3 = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$$

When we expand $(x + h)^3$ by using the binomial formula, we get x^3 as the first term, which cancels with the $-x^3$ term in the numerator.

$$\frac{d}{dx}x^{3} = \lim_{h \to \infty} \frac{x^{3} + 3x^{2}h + 3xh^{2} + h^{3} - x^{4}}{h}$$

Furthermore, we note that the second term has h as a factor and that every other term has h^2 as a factor. If we divide by h, we no longer have an h in the denominator.

$$\frac{d}{dx}x^{3} = \lim_{h \to 0} \left[3x^{2} + (3xh + h^{2}) \right]$$


In this expression all of the terms after the first term have *h* as a factor. If we let *h* approach zero, then the value of all of these terms approaches zero. Thus,

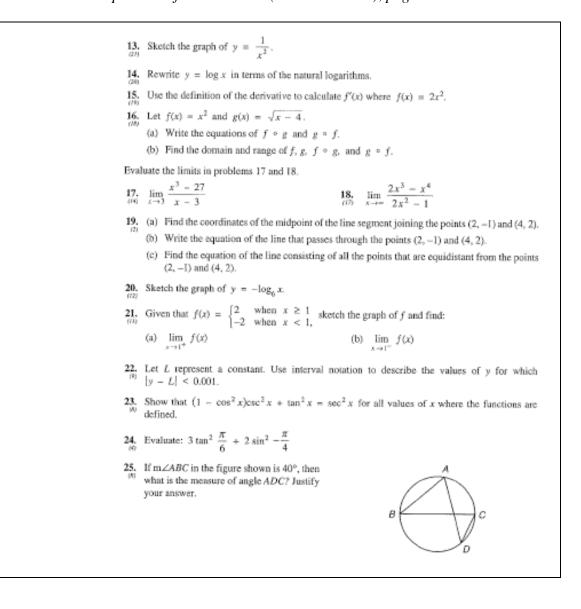
$$\frac{d}{dx}x^3 = 3x$$

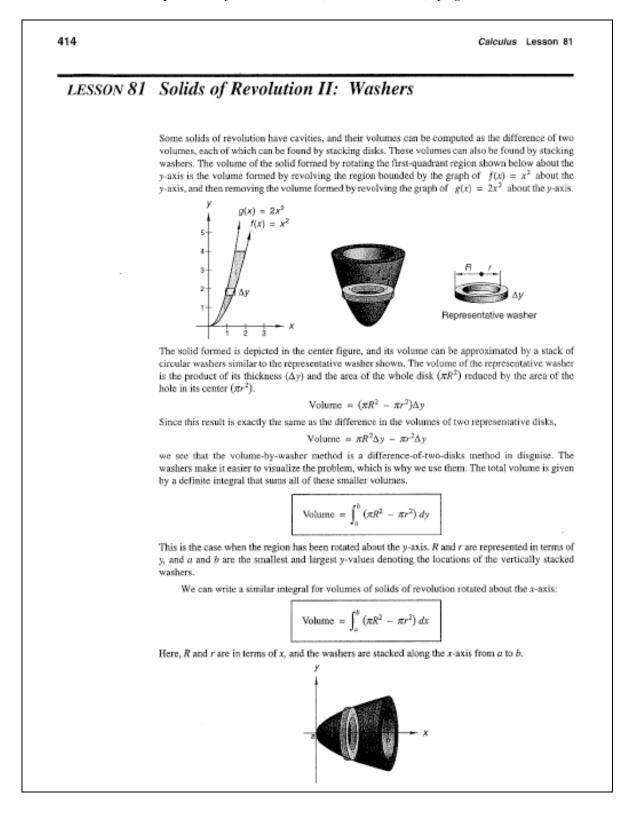
example 24.2 Find the derivative of x" where n is 1, 2, 3, 4,

solution

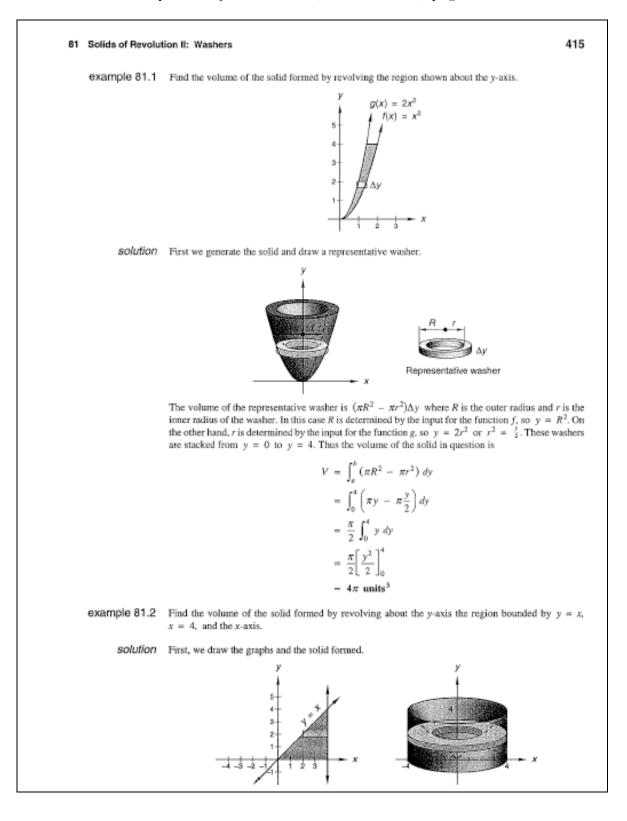
On We use the same diagrams to remember that the definition of the derivative is an algebraic expression of the limit of the rise over the run as the run approaches zero.

When we expand the numerator, we get $x^n + nx^{n-1}h$ plus other terms whose coefficients we represent with empty boxes since their value is of no interest. The last term in the numerator is the last term in the numerator above.

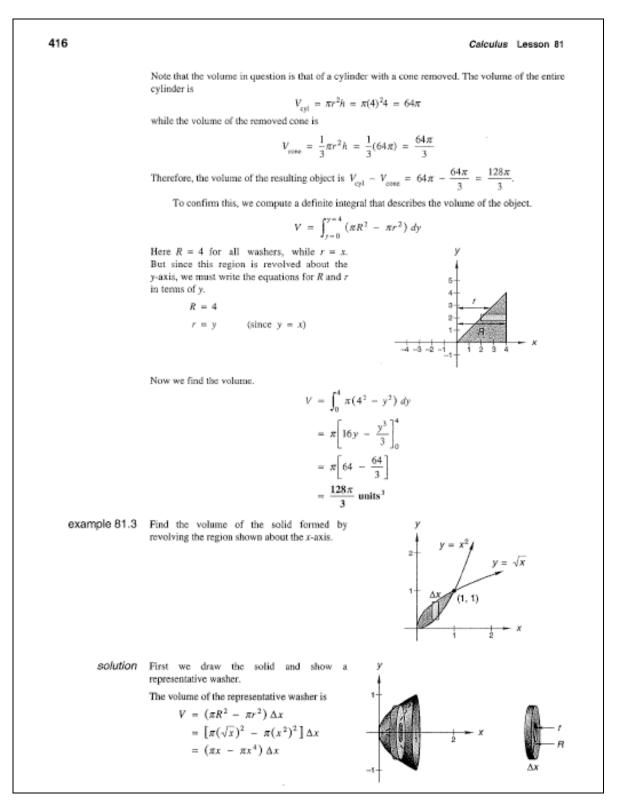

$$\frac{d}{dx}x^{*} = \lim_{k \to 0} \frac{x^{n} + nx^{n-1}h + \prod x^{n-2}h^{2} + \prod x^{*-3}h^{3} + \dots + h^{n} - x^{n}}{h}$$

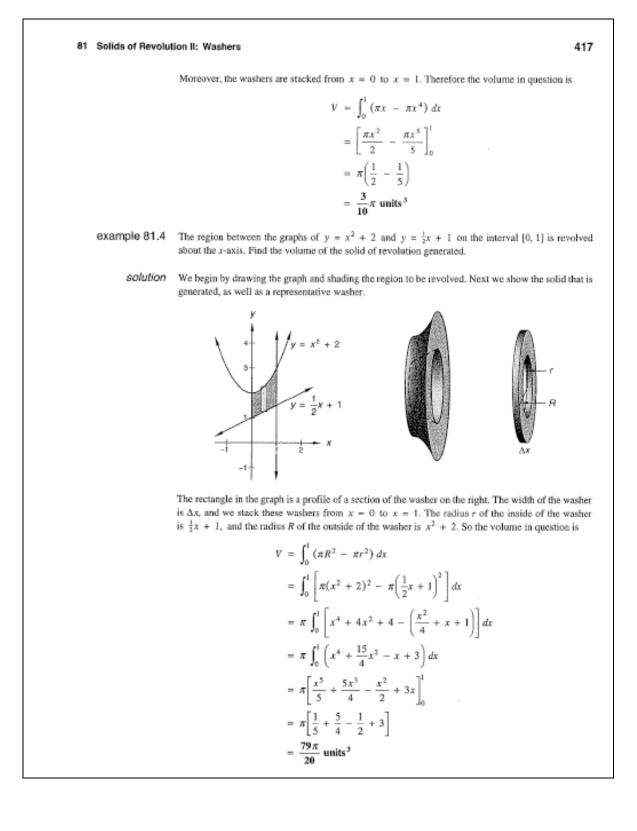

Every term except the first two terms and the last term has h^2 as a factor. Thus

$$\frac{d}{dx}x^n = \lim_{h \to 0} \frac{x^n + nx^{n-1}h + [\text{terms that have } h^2 \text{ as a factor}] - x^n}{h}$$

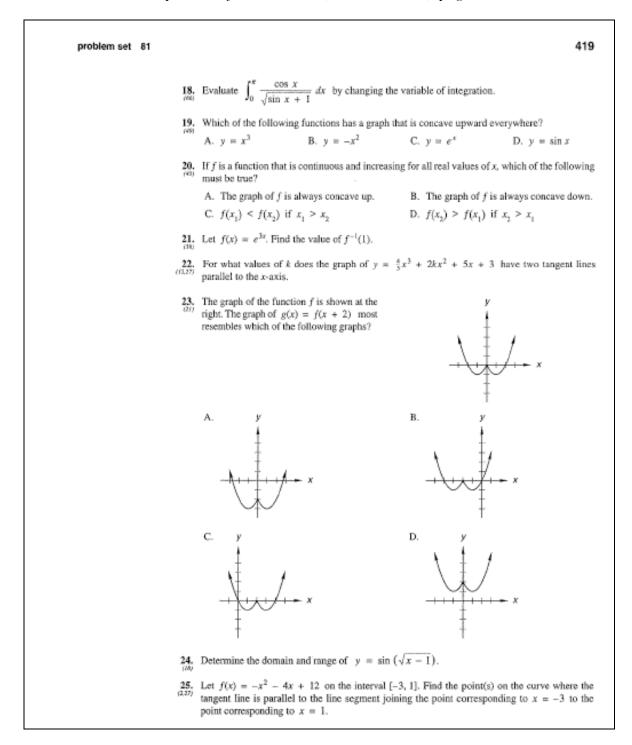

140 Calculus Lesson 24 The sum of the first term and the last term in the numerator is zero. If we divide the rest by h, the h in the second term is eliminated, and every term in the parentheses still has h as a factor. $\frac{d}{dr}x^{n} = \lim_{h \to 0} [nx^{n-1} + (\text{terms that have } h \text{ as a factor})]$ When h approaches zero, the values of all of the terms in the parentheses approach zero, which means $\frac{d}{dx}x^n = nx^{n-1}$ In this example we used the binomial expansion of $(x + h)^{\mu}$ to prove that the derivative of x^{μ} is nx^{k-1} if n is a positive integer. This proof is only valid if n is a natural number. It does not work for a rational number such as $\frac{2}{3}$ or an irrational number such as π , because the binomial expansion cannot be used to expand expressions such as $(x + h)^{2/3}$ or $(x + h)^{n/3}$. The rule above is valid, however, for any real number value of n. We will use this fact even though the complete proof is not presented. This rule is called the power rule for derivatives. 1. A rectangular sheet of metal measuring problem set 24 1 meter by 20 meters is to be made into a gutter by bending its two sides upward at right angles to the base. If both vertical sides of the gutter have the same height x, what is the capacity of the gutter in terms of x? (The capacity of the gutter is the maximum amount of fluid it could hold if it were closed at both ends.) **2.** Find $\frac{dy}{dx}$ where $y = x^3$. 3. Find f'(x) where $f(x) = \sqrt[3]{x}$. 4. Find $\frac{ds}{dt}$ where $s = \frac{1}{t^3}$. 5. Find $D_y y$ where $y = \sqrt[4]{x^3}$. 6. Find $\frac{dy}{dx}$ where $y = \frac{1}{x^2}$. 7. Let $f(x) = x^2$ and define g by $g(x) = \frac{f(2 + x) - f(2)}{x}$. (a) Graph g on a graphing calculator. (b) Use the trace feature or the table feature to determine the value g(x) approaches as x approaches 0. (c) Find f'(x) and evaluate f' at x = 2. (d) How do the answers to (b) and (c) compare? 8. Solve: $\cos(3\theta) = -\frac{1}{2} (0 \le \theta \le 2\pi)$ 9. Use the graphing calculator to graph $4y^2 + 8y - x + 5 = 0$. 10. Find the coefficient of x^4y^3 in the expansion of $(x - 2y)^7$. 11. Let $f(x) = e^x$ and g(x) = f(-x). Graph f and g on the same coordinate plane. 12. Let $f(x) = \cos x$ and $h(x) = 1 + f\left(x - \frac{\pi}{4}\right)$. Graph h.

Calculus, Lesson 24 Sample taken from Calculus (Second Edition), page 141





Calculus, Lesson 81


Calculus, Lesson 81

Calculus, Lesson 81 Sample taken from Calculus (Second Edition), page 418

418	Calculus Lesson 81
problem set 1 81	A 10-meter-long trough with a right triangular cross section is partially filled with a fluid whose weight density is 9000 newtons per cubic meter. The level of the fluid is 1 meter below the top rim of the trough. Find the work done in pumping all the fluid out of the top of the tank.
2	Suppose the function f is defined as $f(x) = \begin{cases} x^2 + 2x & \text{when } x \leq 2 \\ 3x + b & \text{when } x > 2 \end{cases}$ Find the value of b for which f is continuous everywhere.
3 87	Let f be a quadratic function. The slope of the line tangent to the graph of f at $x = 1$ is 1, and the slope of the line tangent to the graph of f at $x = 2$ is 5. The graph of f passes through the point (0, 1). Find the equation of f.
inte	problems 4 and 5, let R be the region in the first quadrant between $y = x^2$ and the x-axis on the erval [0, 3].
. 4	Find the volume of the solid formed when R is revolved about the x-axis.
5	Find the volume of the solid formed when R is revolved about the y-axis.
6	Let <i>R</i> be the region in the first quadrant enclosed by the graphs of $y = x^2$, $y = \frac{1}{4}x^2$, and $y = 4$. Find the volume of the solid formed when <i>R</i> is rotated around the <i>y</i> -axis.
,7 ,80	Let <i>R</i> be the first-quadrant region completely bounded by the graph of $y = \sqrt{x}$ and $y = x^3$. Find the volume of the solid formed when region <i>R</i> is revolved about the <i>x</i> -axis.
8 ,80	Let <i>R</i> be the region bounded by the graphs of $y = x^2 + 1$, $y = x$, $x = 0$, and $x = 2$. Find the volume of the solid formed when region <i>R</i> is rotated around the <i>x</i> -axis.
9	Write the equations of the asymptotes of the graph of the function $y = \frac{2x^2 - 2x - 4}{x - 1}$.
	aph the functions in problems 10 and 11. Clearly indicate all zeros and asymptotes.
10 .**	$y = \frac{x^2 + 1}{2x}$ 11. $y = \frac{x^2 + x - 2}{x + 1}$
Ev	aluate the limits in problems 12 and 13.
12 (7)	$\lim_{x \to 0} \frac{\sin (3x)}{x} = \frac{13}{x^2 - x - 2}$
. 14	Write the equation of the line tangent to the graph of $y = 2^x$ at $x = 2$.
15	If $\lim_{x\to 2} f(x) = 7$, which of the following must be true?
	A. $f = x_1 + x_2 = 2$. B. $f(2) = 7$
	C. f is continuous at $x = 2$. D. None of the above
16 (64,72,	
17. 1603	Antidifferentiate: $\int \left(2^x + \frac{1}{1 + x^2}\right) dx$

597 116 Series LESSON 116 Series Lesson 105 introduced the concept of a sequence, an infinite and ordered list of terms. We now discuss the concept of the sum of infinitely many terms, which is called an infinite series or series. If $\{a_i\}$ is a sequence of terms for i = 1, 2, 3, ..., we can form a series S by summing these terms. $S = a_1 + a_2 + a_3 + \cdots$ or $S = \sum_{i=1}^{n} a_i$ Unfortunately S is represented as an infinite summation. If it has a value, that value cannot be determined by adding all the a,'s, because the process never ends. However, it is possible to add the first n terms. Therefore the nth partial sum of S, denoted S, is defined by $S_a = a_1 + a_2 + a_3 + \dots + a_n$ All partial sums are finite, since each is a sum of a finite number of terms. $S_1 = a_1$ $S_2 = a_1 + a_2$ $S_3 = a_1 + a_2 + a_3$ Notice that the partial sums of S form a sequence S1, S2, S3, Thus, we define the sum of a series S to be the limit of the sequence of its partial sums. $S = \sum_{i=1}^{\infty} a_i = \lim_{u \to \infty} S_u$ Moreover, we say the infinite series S converges if $\lim_{n\to\infty} S_n$ converges. Otherwise S is said to diverge. example 116.1 Let $S = \sum_{i=1}^{\infty} \frac{1}{2^{ii}}$. Find the first five partial sums of S. That is, find S_1, S_2, S_3, S_4 , and S_5 . solution The first five terms of S are $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, and $\frac{1}{32}$. The partial sums are as follows: $S_1 = \frac{1}{2}$ $S_2 = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$ $S_3 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{3}{4} + \frac{1}{8} = \frac{7}{8}$ $S_4 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} = \frac{7}{8} + \frac{1}{16} = \frac{15}{16}$ $S_5 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} = \frac{15}{16} + \frac{1}{32} = \frac{31}{32}$ example 116.2 Does the infinite series $S = \sum_{i=1}^{\infty} \frac{1}{2^{\kappa}}$ converge or diverge? solution To answer such a question regarding infinite series, we must consider lim S

Calculus, Lesson 116 Sample taken from Calculus (Second Edition), page 598

598	Calculus Lesson 116								
	Therefore we must find a formula for S_n , the <i>n</i> th partial sum of <i>S</i> . We seek a pattern in the partial sums S_1 , S_2 , S_3 , S_4 , and S_5 . Notice that the denominators are powers of 2.								
	$S_1 = \frac{1}{2} = \frac{1}{2^1}$								
	$S_2 = \frac{3}{4} = \frac{3}{2^2}$								
	$S_3 = \frac{7}{8} = \frac{7}{2^3}$								
	$S_4 = \frac{15}{16} = \frac{15}{2^4}$								
	$S_5 = \frac{31}{32} = \frac{31}{2^5}$								
	Moreover, the numerators are one less than the denominators.								
	$S_1 = \frac{2^1 - 1}{2^1}$								
	$S_2 = \frac{2^2 - 1}{2^2}$								
	$S_3 = \frac{2^3 - 1}{2^3}$								
	$S_4 = \frac{2^4 - 1}{2^4}$								
	$S_5 = \frac{2^5 - 1}{2^5}$								
	From these we conjecture that								
	$S_{ii} = \frac{2^{ii} - 1}{2^{ii}} = 1 - \frac{1}{2^{ii}}$								
	It turns out we can prove that this formula for S_n is correct for all positive integers n . (Usually, it is more difficult to find an explicit formula for S_n .) Thus, we can determine whether the series converges or diverges.								
	$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \frac{1}{2^n} \right) = 1 - 0 = 1$								
	Hence $\sum_{n=1}^{\infty} \frac{1}{2^n}$ converges and $\sum_{n=1}^{\infty} \frac{1}{2^n} = 1$.								
example 116.3	Find the first four partial sums of the series $\sum_{n=1}^{\infty} \frac{1}{n}$.								
solution	The partial sums are as follows:								
	$S_1 = \frac{1}{1} = 1$								
	$S_2 = \frac{1}{1} + \frac{1}{2} = \frac{3}{2}$								
	$S_3 = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} = \frac{11}{6}$								
	$S_4 = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{25}{12}$								
	While these partial sums do not appear to grow large, this series actually diverges. The series $\sum_{n=1}^{\infty} \frac{1}{n}$ is known as the harmonic series . It will be discussed more in Lesson 127.								

Calculus, Lesson 116 Sample taken from Calculus (Second Edition), page 599

problem set 116		599
problem set 116	1. Approximate to ten decimal places the x-coordinate of the first-quadrant point of intersection $f^{(0)}$ the graphs of $y = x$ and $y = \cos x$.	on of
	2. A solid has a base bounded by $y = 4 - x^2$ and the x-axis. Each cross section perpendicul the base and parallel to the x-axis is a rectangle of height 2. Find its volume.	ar to
	3. Determine the average value of $f(x) = \sin x$ on the closed interval $[0, \pi]$. Confirm the N Value Theorem for Integrals using f on this interval.	4ean
	4. Define: series	
	5. A variable force $F(x) = xe^{x^2}$ newtons is applied to an object to move it along a straight line the direction of the force. Find the work done by the force on the object in moving it if $x = 0$ to $x = 3$ meters.	ne in from
	6. Evaluate: $\lim_{x\to 0^+} [\sin x \ln (\sin x)]$	
	Antidifferentiate in problems 7 and 8.	
	$\frac{7}{x^{(12)}} \int \frac{6x+1}{x(x+1)(x+2)} dx \qquad $	
	9. Write the polar form of the rectangular equation $x^2 + y^2 = 4$.	
	10. Find the length of the curve whose graph is defined by the parametric equations $x = e^{t} x^{(2/4)}$ and $y = e^{t} \cos t$ on the interval from $t = 0$ to $t = 2$.	sin t
	11. A particle moves along the path defined by the parametric equations $x = \frac{t^2}{2}$ $y = \frac{1}{3}(2t + 1)^{3/2}$. Find the distance the particle travels between times $t = 0$ and $t = 4$.	and
	Graph the equations in problems 12 and 13 on a polar coordinate system.	
	$\frac{12}{(10)} r = 2 \sin \theta \qquad \qquad \frac{13}{(10)} r = 3 \sin (3\theta)$	
1	Integrate in problems 14-17.	
	14. $\int \frac{2x}{4+9x^2} dx$ 15. $\int \frac{4+9x^2}{2x} dx$	
	$\lim_{x \to \infty} \int \frac{2x}{\sqrt{4 + 9x^2}} dx \qquad $	
	18. List the first six terms of $\sum_{n=1}^{\infty} \frac{2n}{3}$.	
i	19. Find the first six partial sums of the series $\sum_{n=1}^{\infty} \frac{2n}{3}$.	
i	20. Would you guess that the series \$\sum_{n=1}^{\sum_{n=1}}\$ \frac{2n}{3}\$ converges or diverges? If you say it converges, to with would you guess it converges?	hat
	21. List the first six terms of $\sum_{n=1}^{\infty} \frac{3}{2^n}$.	
2	22. Find the first six partial sums of the series $\sum_{n=1}^{\infty} \frac{3}{2^n}$.	

Calculus, Lesson 116 Sample taken from Calculus (Second Edition), page 600

23. (18)	Would you guess that the series $\sum_{n=1}^{\infty} \frac{3}{2^n}$ converges or diverges? If you say it converges, to what would you guess it converges?										
	Differentiate $y = \frac{1}{\sqrt{x}} - x \ln \sin x + \arcsin \frac{x}{2}$ with respect to x.										
25. 1957	An experiment confirms that there is a relationship between two quantities, which we represent by the variables x and y . The experiment produced the correspondences between x and y indicated in the following table:										
		x	2.0	2.5	3.0	3.5	4.0	4.5	5.0		
		у	2.7	3.5	4.1	4.0	3.8	3.2	2.4		
Though we do not have the equation $y = f(x)$, we know that $\int f(x) dx$ has an important physical meaning. Approximate $\int_{a}^{b} f(x) dx$ using this data and the trapezoidal rule with $n = 6$ subintervals.										mportant ule with	

Houghton Mifflin Harcourt™, Saxon Math™, and Saxon® are trademarks or registered trademarks of Houghton Mifflin Harcourt Publishing Company. © Houghton Mifflin Harcourt Publishing Company. All rights reserved. Printed in the U.S.A. 02/14 MS96848h

MARCO F Houghton Mifflin Harcourt

hmhco.com • 800.225.5425

Houghton Mifflin Harcourt

hmhco.com/homeschoolers